Artificial skins with functions such as sensing, variable stiffness, actuation, self-healing, display, adhesion, and camouflage have been developed and widely used, but artificial skins with escape function are still a research gap. In nature, every species of animal can use its innate skills and functions to escape capture. Inspired by the behavior of fish-scale geckoes escaping predation by shedding scales when grasped or touched, we propose a flexible escape skin by attaching artificial scales to a flexible film.
View Article and Find Full Text PDFBioinspir Biomim
October 2022
Rigid-flexible-soft coupled robots are an important development direction of robotics, which face many theoretical and technical challenges in their design, manufacture, and modeling. Inspired by fishbones, we propose a novel cable-driven single-backbone continuum robot which has a compact structure, is lightweight, and has high dexterity. In contrast to the existing single-backbone continuum robots, the middle backbone of the continuum robot is serially formed by multiple cross-arranged bioinspired fishbone units.
View Article and Find Full Text PDFHow to further improve the dexterity of continuum robots so that they can quickly change their structural size like flexible biological organs is a key challenge in the field of robotics. To tackle this dexterity challenge, this paper proposes a soft-rigid coupled bioinspired elephant trunk robot with variable diameter, which is enabled by combining a soft motion mechanism with a novel rigid variable-diameter mechanism (double pyramid deployable mechanism). The integration of these two mechanisms has produced three significant beneficial effects: (i) The coexistence of multi-degree-of-freedom motion capability and variable size function greatly improves the dexterity of the elephant trunk robot.
View Article and Find Full Text PDFFrom small unicellular organisms to large mammals, swallowing is an important way for them to interact with their external environment. The majority of these animals swallow their targets for the purpose of hunting, and some fish and amphibians protect their cubs from external injury by swallowing them. Thus, swallowing can produce an efficient capture, keep the integrity of targets, and provide effective protection for swallowed objects.
View Article and Find Full Text PDFBioinspir Biomim
February 2020
The improvement of the load capacity of soft robotic grippers has always been a challenge. The load improvement methods of existing soft robotic grippers mainly include the development of soft actuators with high output force and the creation of closed gripping structures. Inspired by winding behaviors of animals and plants, we propose a high-load soft robotic gripper driven by pneumatic artificial muscles (PAMs) that combines the advantages of a high force soft actuator and a closed gripping structure.
View Article and Find Full Text PDFThe improvement of the load capacity of soft grippers has always been a challenge. To tackle this load capacity challenge, this work presents four novel types of high-load (HL) soft grippers that are bioinspired by bionic winding models. The winding models are found commonly in many animals and plants, where different winding patterns are used to grip different objects.
View Article and Find Full Text PDF