Publications by authors named "Jiansong Cheng"

Cell therapy by autologous mesenchymal stem cells (MSCs) is a clinically acceptable strategy for treating various diseases. Unfortunately, the therapeutic efficacy is largely affected by the low quality of MSCs collected from patients. Here, we showed that the gene expression of MSCs from patients with diabetes was differentially regulated compared to that of MSCs from healthy controls.

View Article and Find Full Text PDF

We first identified thrombomodulin (TM) and endothelial nitric oxide (NO) synthase as key factors for the antithrombogenic function of the endothelium in human atherosclerotic carotid arteries. Then, recombinant TM and an engineered galactosidase responsible for the conversion of an exogenous NO prodrug were immobilized on the surface of the vascular grafts. Surface modification by TM and NO cooperatively enhanced the antithrombogenicity and patency of vascular grafts.

View Article and Find Full Text PDF

The first bacterial α2-6-sialyltransferase cloned from Photobacterium damselae (Pd2,6ST) has been widely applied for the synthesis of various α2-6-linked sialosides. However, the extreme substrate flexibility of Pd2,6ST makes it unsuitable for site-specific α2-6-sialylation of complex substrates containing multiple galactose and/or N-acetylgalactosamine units. To tackle this problem, a general redox-controlled site-specific sialylation strategy using Pd2,6ST is described.

View Article and Find Full Text PDF

The spatiotemporal generation of nitric oxide (NO), a versatile endogenous messenger, is precisely controlled. Despite its therapeutic potential for a wide range of diseases, NO-based therapies are limited clinically due to a lack of effective strategies for precisely delivering NO to a specific site. In the present study, we developed a novel NO delivery system via modification of an enzyme-prodrug pair of galactosidase-galactosyl-NONOate using a 'bump-and-hole' strategy.

View Article and Find Full Text PDF

N-acetyltransferases are a family of enzymes that catalyze the transfer of the acetyl moiety (COCH) from acetyl coenzyme A (Acetyl-CoA) to a primary amine of acceptor substrates from small molecules such as aminoglycoside to macromolecules of various proteins. In this study, the substrate selectivity of three N-acetyltransferases falling into different phylogenetic groups was probed against a series of hexosamines and synthetic peptides. GlmA from Clostridium acetobutylicum and RmNag from Rhizomucor miehei, which have been defined as glucosamine N-acetyltransferases, were herein demonstrated to be also capable of acetylating the free amino group on the very first glycine residue of peptide in spite of varied catalytic efficiency.

View Article and Find Full Text PDF

In this paper, the electrochemiluminescence (ECL) behavior of luminol/H O system in the presence of bromhexine hydrochloride (BrH) was investigated. It was found that the ECL intensity of luminol/H O system on a platinum electrode could be intensely quenched by BrH owing to the scavenging superoxide radical ability of BrH, and therefore the sensitive determination of BrH was possible. Under optimal conditions, the quenched ECL intensity was linear to the concentration of BrH in a wide range of 0.

View Article and Find Full Text PDF

A novel enzymatic approach was developed for facile production of glycopeptides carrying natural eukaryotic N-glycans. In this approach, peptides can be GlcNAcylated at one or two natural N-glycosylation sites via two-step enzymatic reactions catalyzed by an evolved N-glycosyltransferase (ApNGT) and a glucosamine N-acetyltransferase (GlmA), respectively. The resulting GlcNAc-peptides were further modified by an endo-β-N-acetylglucosaminidase M mutant (EndoM) to generate glycopeptides.

View Article and Find Full Text PDF

Naturally occurring -glycoproteins exhibit glycoform heterogeneity with respect to -glycan sequon occupancy (macroheterogeneity) and glycan structure (microheterogeneity). However, access to well-defined glycoproteins is always important for both basic research and therapeutic purposes. As a result, there has been a substantial effort to identify and understand the catalytic properties of -glycosyltransferases, enzymes that install the first glycan on the protein chain.

View Article and Find Full Text PDF

Despite the absence of any homologs of Tannerella forsythia KLIKK proteases in Tannerella sp.6_1_58FAA_CT1, the strain possesses a putative cysteine protease (G9S4N1) closely related to RgpB of Porphyromonas gingivalis. G9S4N1 lacks obvious propeptide that behaves as inhibitor of proteases and was proven to be a propeptide-independent protease.

View Article and Find Full Text PDF

N-Glycosylation is one of the most prevalent protein post-translational modifications and is involved in many biological processes, such as protein folding, cellular communications, and signaling. Alteration of N-glycosylation is closely related to the pathogenesis of diseases. Thus, the investigation of protein N-glycosylation is crucial for the diagnosis and treatment of disease.

View Article and Find Full Text PDF

Here we report a facile and efficient method for site-directed glycosylation of peptide/protein. The method contains two sequential steps: generation of a GlcNAc-O-peptide/protein, and subsequent ligation of a eukaryotic N-glycan to the GlcNAc moiety. A pharmaceutical peptide, glucagon-like peptide-1 (GLP-1), and a model protein, bovine α-Crystallin, were successfully glycosylated using such an approach.

View Article and Find Full Text PDF

Sialyltransferases are key enzymes involved in the biosynthesis of biologically and pathologically important sialic acid-containing molecules in nature. In this study, the activity of a putative sialyltransferase (Pm0160) harboring an inherent mutation D141Y in the conserved DDG motif, which has been identified in GT52 and GT80 families, was restored by reverse mutation. More interestingly, a hydrogen-bond chain was found to form between three conserved residues (Asp141, Asn109, and Asp33) of GT80 sialyltransferases based on recently determined crystal structures.

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs) are a family of structurally diverse unconjugated glycans that exhibit a wide range of biological activities. In this report, we describe an efficient, Multi-Enzyme One-Pot strategy to produce HMO mimics by the sialylation of galacto-oligosaccharides (GOSs), which are often added to infant formula as an inexpensive alternative to HMOs. In this system, the sialyltransferase donor, cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac), was generated in situ using a CMP-sialic acid synthetase.

View Article and Find Full Text PDF

Superoxide dismutases (SODs), especially thermostable SODs, are widely applied in medical treatments, cosmetics, food, agriculture, and other industries given their excellent antioxidant properties. A novel thermostable cambialistic SOD from Geobacillus thermodenitrificans NG80-2 exhibits maximum activity at 70 °C and high thermostability over a broad range of temperatures (20-80 °C). Unlike other reported SODs, this enzyme contains an extra repeat-containing N-terminal domain (NTD) of 244 residues adjacent to the conserved functional SODA domain.

View Article and Find Full Text PDF

A novel chemoenzymatic approach for the synthesis of disialyl tetrasaccharide epitopes found as the terminal oligosaccharides of GD1α, GT1aα, and GQ1bα is described. It relies on chemical manipulation of enzymatically generated trisaccharides as conformationally constrained acceptors for regioselective enzymatic α2-6-sialylation. This strategy provides a new route for easy access to disialyl tetrasaccharide epitopes and their derivatives.

View Article and Find Full Text PDF

MGT, a macrolide UDP-glycosyltransferase from Streptomyces lividans, has been employed as a synthetic "tool kit" to synthesize a series of modified antibiotics owing to its broad substrate plasticity. Other than MGT, a number of UDP-glycosyltransferases with substrate promiscuity were also used to alter glycosylation patterns of secondary metabolites in an emerging method called "chemoenzymatic glycorandomization". However, the structural basis of tolerating variant acceptors for these glycosyltransferases is still not clear.

View Article and Find Full Text PDF

Glycosylation is a widespread modification of plant secondary metabolites, and catalyzed by a superfamily of enzymes called UDP-glycosyltransferases (UGTs). UGTs are often involved in late biosynthetic steps and show broad substrate specificity or regioselectivity. In this study, the acceptor promiscuity of a Rosa hybrid UGT RhGT1 and an evolved microbial UGT OleD(PSA) toward a small flavonoid library was probed and compared.

View Article and Find Full Text PDF

Almost all Streptococcus pneumoniae (pneumococcus) capsule serotypes employ the Wzy-dependent pathway for their capsular polysaccharide (CPS) biosynthesis. The assembly of the CPS repeating unit (RU) is the first committed step in this pathway. The wciN gene was predicted to encode a galactosyltransferase involved in the RU assembly of pneumococcus type 6B CPS.

View Article and Find Full Text PDF

Galactokinase (GalK), particularly GalK from Escherichia coli, has been widely employed for the synthesis of sugar-1-phosphates. In this study, a GalK from Bifidobacterium infantis ATCC 15697 (BiGalK) was cloned and over-expressed with a yield of over 80 mg/L cell cultures. The k(cat)/K(m) value of recombinant BiGalK toward galactose (164 s(-1) mM(-1)) is 296 times higher than that of GalK from E.

View Article and Find Full Text PDF

DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature.

View Article and Find Full Text PDF

Suppression of inflammation is critical for effective therapy of many infectious diseases. However, the high rates of mortality caused by sepsis attest to the need to better understand the basis of the inflammatory sequelae of sepsis and to develop new options for its treatment. In mice, inflammatory responses to host danger-associated molecular patterns (DAMPs), but not to microbial pathogen-associated molecular patterns (PAMPs), are repressed by the interaction [corrected] of CD24 and SiglecG (SIGLEC10 in human).

View Article and Find Full Text PDF

Lewis x (Le(x)) and sialyl Lewis x (SLe(x))-containing glycans play important roles in numerous physiological and pathological processes. The key enzyme for the final step formation of these Lewis antigens is alpha1-3-fucosyltransferase. Here we report molecular cloning and functional expression of a novel Helicobacter hepaticus alpha1-3-fucosyltransferase (HhFT1) which shows activity towards both non-sialylated and sialylated Type II oligosaccharide acceptor substrates.

View Article and Find Full Text PDF

para-Nitrophenol-tagged sialyl galactosides containing sialic acid derivatives in which the C5 hydroxyl group of sialic acids was systematically substituted with a hydrogen, a fluorine, a methoxyl or an azido group were successfully synthesized using an efficient chemoenzymatic approach. These compounds were used as valuable probes in high-throughput screening assays to study the importance of the C5 hydroxyl group of sialic acid in the recognition and the cleavage of sialoside substrates by bacterial sialidases.

View Article and Find Full Text PDF

In order to understand the biological importance of naturally occurring sialic acid variations on disialyl structures in nature, we developed an efficient two-step multienzyme approach for the synthesis of a series of GD3 ganglioside oligosaccharides and other disialyl glycans containing a terminal Siaalpha2-8Sia component with different natural and non-natural sialic acids. In the first step, alpha2-3- or alpha2-6-linked monosialylated oligosaccharides were obtained using a one-pot three-enzyme approach. These compounds were then used as acceptors for the alpha2-8-sialyltransferase activity of a recombinant truncated multifunctional Campylobacter jejuni sialyltransferase CstII mutant, CstIIDelta32(I53S), to produce disialyl oligosaccharides.

View Article and Find Full Text PDF

Trans-sialidases catalyze the transfer of a sialic acid from one sialoside to an acceptor to form a new sialoside. alpha2,3-Trans-sialidase activity was initially discovered in the parasitic protozoan Trypanosoma cruzi, and more recently was found in a multifunctional Pasteurella multocida sialyltransferase PmST1. alpha2,8-Trans-sialidase activity was also described for a multifunctional Campylobacter jejuni sialyltransferase CstII.

View Article and Find Full Text PDF