Publications by authors named "Jianshe Yan"

Peritoneal inflammation remains a major cause of treatment failure in patients with kidney failure who receive peritoneal dialysis. Peritoneal inflammation is characterized by an increase in neutrophil infiltration. However, the molecular mechanisms that control neutrophil recruitment in peritonitis are not fully understood.

View Article and Find Full Text PDF

To determine if 1,25(OH)D deficiency can induce age-related sarcopenia, the skeletal muscular phenotype of male wild-type (WT) and Cyp27b1 knockout (KO) mice were compared at 3 and 6 months of age. We found that muscle mass, grip strength and muscle fiber size were significantly decreased in aging Cyp27b1 KO male mice. The expression levels of genes related to mitochondrial metabolic activity, and antioxidant enzymes including SOD1, catalase, Nqo1 and Gcs were significantly down-regulated in skeletal muscle tissue of Cyp27b1 KO male mice; in contrast, the percentage of p16 and p21 myofibers, and the expression of p16, p19, p21, p53, TNFα, IL6 and MMP3 at mRNA and/or protein levels were significantly increased.

View Article and Find Full Text PDF

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.

View Article and Find Full Text PDF

Bone homeostasis is a metabolic balance between the new bone formation by osteoblasts and old bone resorption by osteoclasts. Excessive osteoclastic bone resorption results in low bone mass, which is the major cause of bone diseases such as rheumatoid arthritis. Small GTPases Rac1 is a key regulator of osteoclast differentiation, but its exact mechanism is not fully understood.

View Article and Find Full Text PDF

1-Chloro-2-hydroxy-3-butene (CHB) is a possible metabolite of 1,3-butadiene, a carcinogenic air pollutant. To demonstrate its formation in vivo, it is desirable to develop a practical biomarker and the corresponding analysis method. CHB can undergo alcohol dehydrogenase- and cytochromes P450 enzymes (P450)-mediated oxidation to yield 1-chloro-3-buten-2-one (CBO), which readily forms glutathione conjugates.

View Article and Find Full Text PDF

HB-EGF, a member of the EGF superfamily, plays important roles in development and tissue regeneration. However, its functions in skeletal stem cells and skeleton development and growth remain poorly understood. Here, we used the Cre/LoxP system to ablate or express HB-EGF in Dermo1+ mesenchymal stromal cells and their progenies, including chondrocytes and osteoblast lineage cells, and bone marrow stromal cells (BMSCs).

View Article and Find Full Text PDF

Protein-protein interactions play central roles in intercellular and intracellular signal transduction. Impairment of protein-protein interactions causes many diseases such as cancer, cardiomyopathies, diabetes, microbial infections, and genetic and neurodegenerative disorders. Immunoprecipitation is a technique in which a target protein of interest bound by an antibody is used to pull down the protein complex out of cell lysates, which can be identified by mass spectrometry.

View Article and Find Full Text PDF

Monitoring drug concentrations in vivo is very useful for adjusting a drug dosage during treatment and for drug research. Specifically, cutting-edge "on-line" drug research relies on knowing how drugs are metabolized or how they interact with the blood in real-time. Thus, this study explored performing in vivo Raman measurements of the model drug levofloxacin lactate in the blood using a nanoparticle-coated optical fiber probe (optical fiber nano-probe).

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most prevalent malignant carcinoma among males in western countries. Currently no treatments can cure advanced prostate cancers, so new diagnostic and therapeutic strategies are in urgent need. At present limited knowledge is available concerning the roles of dysregulated microRNAs in prostate cancer metastasis.

View Article and Find Full Text PDF

Oscillation of chemical signals is a common biological phenomenon, but its regulation is poorly understood. At the aggregation stage of Dictyostelium discoideum development, the chemoattractant cAMP is synthesized and released at 6-min intervals, directing cell migration. Although the G protein-coupled cAMP receptor cAR1 and ERK2 are both implicated in regulating the oscillation, the signaling circuit remains unknown.

View Article and Find Full Text PDF

Prostate cancer is a leading cause of cancer-related mortality in men worldwide and there is a lack of effective treatment options for advanced (metastatic) prostate cancer. Currently, limited knowledge is available concerning the role of long non-coding RNAs in prostate cancer metastasis. In this study, we found that long non-coding RNA H19 (H19) and H19-derived microRNA-675 (miR-675) were significantly downregulated in the metastatic prostate cancer cell line M12 compared with the non-metastatic prostate epithelial cell line P69.

View Article and Find Full Text PDF

The chemokine CXCL12 and its G-protein-coupled receptor CXCR4 control the migration, invasiveness and metastasis of breast cancer cells. Binding of CXCL12 to CXCR4 triggers activation of heterotrimeric Gi proteins that regulate actin polymerization and migration. However, the pathways linking chemokine G-protein-coupled receptor/Gi signalling to actin polymerization and cancer cell migration are not known.

View Article and Find Full Text PDF

Chemotaxis is crucial for many physiological processes including the recruitment of leukocytes to sites of infection, trafficking of lymphocytes in the human body, and metastasis of cancer cells. A family of small proteins, chemokines, serves as the signals, and a family of G-protein coupled receptors (GPCRs) detects chemokines and direct cell migration. One of the basic questions in chemotaxis of eukaryotes is how a GPCR transduces signals to control the assembly of the actin network that generates directional force for cell migration.

View Article and Find Full Text PDF

Activation of G protein-coupled receptors (GPCRs) leads to the dissociation of heterotrimeric G-proteins into Gα and Gβγ subunits, which go on to regulate various effectors involved in a panoply of cellular responses. During chemotaxis, Gβγ subunits regulate actin assembly and migration, but the protein(s) linking Gβγ to the actin cytoskeleton remains unknown. Here, we identified a Gβγ effector, ElmoE in Dictyostelium, and demonstrated that it is required for GPCR-mediated chemotaxis.

View Article and Find Full Text PDF

The coupling of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) with G proteins is fundamental for GPCR signaling; however, the mechanism of coupling is still debated. Moreover, how the proposed mechanisms affect the dynamics of downstream signaling remains unclear. Here, through experiments involving fluorescence recovery after photobleaching and single-molecule imaging, we directly measured the mobilities of cyclic adenosine monophosphate (cAMP) receptor 1 (cAR1), a chemoattractant receptor, and a G protein βγ subunit in live cells.

View Article and Find Full Text PDF

The Elmo protein family members are important mediators of small G protein activity, regulating actin-mediated processes such as chemotaxis and engulfment. Until recently,1 Elmo function has not been explored in professional phagocytes such as Dictyostelium discoideum. We discuss the significance of this family with respect to pathways that regulate Rac signaling, we present a comparison of Elmo proteins between representative taxa, and discuss our findings on ElmoA, one of six Elmo proteins found in D.

View Article and Find Full Text PDF

Human leukocytes, including macrophages and neutrophils, are phagocytic immune cells that capture and engulf pathogens and subsequently destroy them in intracellular vesicles. To accomplish this vital task, these leukocytes utilize two basic cell behaviors-chemotaxis for chasing down infectious pathogens and phagocytosis for destroying them. The molecular mechanisms controlling these behaviors are not well understood for immune cells.

View Article and Find Full Text PDF

CheY, the excitatory response regulator in the chemotaxis system of Escherichia coli, can be modulated by two covalent modifications: phosphorylation and acetylation. Both modifications have been detected in vitro only. The role of CheY acetylation is still obscure, although it is known to be involved in chemotaxis and to occur in vitro by two mechanisms--acetyl-CoA synthetase-catalyzed transfer of acetyl groups from acetate to CheY and autocatalyzed transfer from AcCoA.

View Article and Find Full Text PDF

Gprotein-coupled receptor (GPCR) signaling mediates a balance of excitatory and inhibitory activities that regulate Dictyostelium chemosensing to cAMP. The molecular nature and kinetics of these inhibitors are unknown. We report that transient cAMP stimulations induce PIP3 responses without a refractory period, suggesting that GPCR-mediated inhibition accumulates and decays slowly.

View Article and Find Full Text PDF

One of the processes by which CheY, the excitatory response regulator of chemotaxis in Escherichia coli, can be activated to generate clockwise flagellar rotation is by acetyl-CoA synthetase (Acs)-mediated acetylation. Deletion of Acs results in defective chemotaxis, indicating the involvement of Acs-mediated acetylation in chemotaxis. To investigate whether Acs is the sole acetylating agent of CheY, we purified the latter from a delta acs mutant.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioniu3vmpu5bagnfcabth3ddoroa3dfuk81): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once