Physiological blood-tissue barriers play a critical role in separating the circulation from immune-privileged sites and denying access to blood-borne viruses. The mechanism of virus restriction by these barriers is poorly understood. We utilize induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (iBMECs) to study virus-blood-brain barrier (BBB) interactions.
View Article and Find Full Text PDFZika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that lead to different clinical outcomes. The mechanism for the distinct pathogenesis of ZIKV and DENV is poorly understood. Here, we investigate ZIKV and DENV infection of macrophages using a human pluripotent stem cell (hPSC)-derived macrophage model and discover key virus-specific responses.
View Article and Find Full Text PDFThe development of dengue antivirals and vaccine has been hampered by the incomplete understanding of molecular mechanisms of dengue virus (DENV) infection and pathology, partly due to the limited suitable cell culture or animal models that can capture the comprehensive cellular changes induced by DENV. In this study, we differentiated human pluripotent stem cells (hPSCs) into hepatocytes, one of the target cells of DENV, to investigate various aspects of DENV-hepatocyte interaction. hPSC-derived hepatocyte-like cells (HLCs) supported persistent and productive DENV infection.
View Article and Find Full Text PDFUnlabelled: The molecular mechanism of the hepatic tropism of hepatitis C virus (HCV) remains incompletely defined. In vitro hepatic differentiation of pluripotent stem cells produces hepatocyte-like cells (HLCs) permissive for HCV infection, providing an opportunity for studying liver development and host determinants of HCV susceptibility. We previously identified the transition stage of HCV permissiveness and now investigate whether a host protein whose expression is induced during this transition stage is important for HCV infection.
View Article and Find Full Text PDFPhosphatidylinositol kinases (PI kinases) play an important role in the life cycle of several viruses after infection. Using gene knockdown technology, we demonstrate that phosphatidylinositol 4-kinase IIIβ (PI4KB) is required for cellular entry by pseudoviruses bearing the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike protein and that the cell entry mediated by SARS-CoV spike protein is strongly inhibited by knockdown of PI4KB. Consistent with this observation, pharmacological inhibitors of PI4KB blocked entry of SARS pseudovirions.
View Article and Find Full Text PDFIt has been reported that lactoferrin (LF) participates in the host immune response against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) invasion by enhancing NK cell activity and stimulating neutrophil aggregation and adhesion. We further investigated the role of LF in the entry of SARS pseudovirus into HEK293E/ACE2-Myc cells. Our results reveal that LF inhibits SARS pseudovirus infection in a dose-dependent manner.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2006
The prevention of hyperacute rejection (HAR) triggered by interaction between the human natural antibody and xenoreactive antigenic epitope (Gal-alpha1, 3Gal) present on pig cells is the key to success in pig-to-human xenotransplantation. The phage display technology offers an effective strategy for screening peptides which can interact with the anti-Gal antibody to block alpha-Gal antigen binding site. Two peptide libraries, linear 7 peptide library and C7C library, were panned on the anti-B monoclonal antibody which has the characteristic of binding to the alpha-Gal antigenic epitope.
View Article and Find Full Text PDF