Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.
Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.
Uveal melanoma (UM), the predominant primary ocular malignancy, often progresses to liver metastasis with limited therapeutic options. The interplay of the tumor microenvironment, encompassing secreted soluble factors, plays a crucial role in facilitating liver metastasis. In this study, the role is elucidated of the neural growth factor-inducible gene (VGF), a secreted neuropeptide precursor, in Gαq mutant UM.
View Article and Find Full Text PDFCorneal neovascularization (CoNV)is a major cause of blindness in many ocular diseases. Substantial evidence indicates that vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of corneal neovascularization. Previous evidence showed that artemisinin may inhibit angiogenesis through down regulation of the VEGF receptors.
View Article and Find Full Text PDFSignal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs).
View Article and Find Full Text PDFA series of novel compounds bearing a cyclopropyl linkage were designed, synthesized, and evaluated as programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors. An optimized compound (1,2)- showed potent inhibitory activity against the PD-1/PD-L1 interaction (IC = 0.029 μM) with a selected binding affinity with PD-L1 ( = 1.
View Article and Find Full Text PDFThe acute myeloid leukemia (AML) patients obtain limited benefits from current immune checkpoint blockades (ICBs), although immunotherapy have achieved encouraging success in numerous cancers. Here, we found that V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint, is highly expressed in primary AML cells and associated with poor prognosis of AML patients. Targeting VISTA by anti-VISTA mAb boosts T cell-mediated cytotoxicity to AML cells.
View Article and Find Full Text PDFSH2 domains have been recognized as promising targets for various human diseases. However, targeting SH2 domains with phosphopeptides or small-molecule inhibitors derived from bioisosteres of the phosphate group is still challenging. Identifying novel bioisosteres of the phosphate group to achieve favorable potency is urgently needed.
View Article and Find Full Text PDFChemotherapy is still one of the principal treatments for gastric cancer, but the clinical application of 5-FU is limited by drug resistance. Here, we demonstrate that ferroptosis triggered by STAT3 inhibition may provide a novel opportunity to explore a new effective therapeutic strategy for gastric cancer and chemotherapy resistance. We find that ferroptosis negative regulation (FNR) signatures are closely correlated with the progression and chemoresistance of gastric cancer.
View Article and Find Full Text PDFHyperactive signal transducer and activator of transcription 3 (STAT3) signaling is frequently detected in human triple-negative breast cancer (TNBC) and gastric cancer, leading to uncontrolled tumor growth, resistance to chemotherapy, and poor prognosis. Thus, inhibition of STAT3 signaling is a promising therapeutic approach for both TNBC and gastric cancer, which have high incidences and mortality and limited effective therapeutic approaches. Here, we report a small molecule, WZ-2-033, capable of inhibiting STAT3 activation and dimerization and STAT3-related malignant transformation.
View Article and Find Full Text PDFSTAT3 has been validated as an attractive anticancer target due to its important roles in cancer initiation and progression. However, discovery of potent and selective STAT3 small-molecule inhibitors with druglike properties is still challenging. In this study, two series of substituted 2-phenylquinolines and 2-arylimidazo[1,2-a]pyridines were designed through structure-based drug discovery approach by condensing the privileged structures of STX-119 and SH4-54.
View Article and Find Full Text PDFConstitutive activation of signal transducer and activator of transcription 3 (STAT3) is a common feature in human non-small cell lung cancer (NSCLC). STAT3 plays an important role in cancer progression as a driver oncogene and acquired resistance of targeted therapies as an alternatively activated pathway. W2014-S with pharmacophore structure of imidazopyridine, which was firstly reported to be utilized in STAT3 inhibitor discovery, was screened out as a potent STAT3 inhibitor from a library of small molecules.
View Article and Find Full Text PDF