Publications by authors named "Jianrong Bi"

Grassland ecosystems store approximately one-third of the global terrestrial carbon stocks, which play a crucial role in regulating the carbon cycle on regional and global scales, but the current scientific understanding of the variation in net carbon dioxide exchange (NEE) on grassland ecosystems is still limited. Based on the eddy covariance technique, this study investigated the seasonal variation of ecosystem respiration (Reco) and gross primary production (GPP) from 2018 to 2020 in a semi-arid grassland on the Loess Plateau in northwest China. The results indicated that the annual cumulative average NEE value was - 0.

View Article and Find Full Text PDF

Bioaerosols play a significant role in climate change and variation of ecological environment. To investigate characterization of atmospheric bioaerosols, we conducted lidar measurement for observing bioaerosols close to dust sources over northwest China in April, 2014. The developed lidar system can not only allowed us to measure the 32-channel fluorescent spectrum between 343 nm to 526 nm with a spectral resolution of 5.

View Article and Find Full Text PDF

Previous studies have shown that the lidar ratio has a significant influence on the retrieval of the aerosol extinction coefficient via the Fernald method, leading to a large uncertainty in the evaluation of dust radiative forcing. Here, we found that the lidar ratios of dust aerosol were only 18.16 ± 14.

View Article and Find Full Text PDF

A cataclysmic submarine volcano at Hunga Tonga-HungaHa'apai (HTHH) near Tonga, erupted violently on 15 January 2022, which injected a plume of ash cloud soaring into the upper atmosphere. In this study, we examined the regional transportation and potential influence of atmospheric aerosols triggered by HTHH volcano, based on active and passive satellite products, ground-based observations, multi-source reanalysis datasets and atmospheric radiative transfer model. The results indicated that about 0.

View Article and Find Full Text PDF

Aerosol microphysical properties, such as volume concentration (VC) and effective radius (ER), are of great importance to evaluate their radiative forcing and impacts on climate change. However, range-resolved aerosol VC and ER still cannot be obtained by remote sensing currently except for the column-integrated one from sun-photometer observation. In this study, a retrieval method of range-resolved aerosol VC and ER is firstly proposed based on the partial least squares regression (PLSR) and deep neural networks (DNN), combining polarization lidar and collocated AERONET (AErosol RObotic NETwork) sun-photometer observations.

View Article and Find Full Text PDF

Accurate identification of aerosols and cloud from remote sensing observations is of importance for quantitatively evaluating their radiative forcing and related impacts. Even though polarization lidar has exhibited a unique advantage of classifying atmospheric aerosols and clouds over the past several decades, polarization measurements are often achieved at one wavelength (UV or VIS) using laser remote sensing. To better identify the types of aerosols and clouds, we developed a ground-based dual-polarization lidar system that can simultaneously detect polarization measurements at wavelengths of 355 nm and 532 nm.

View Article and Find Full Text PDF

As an important type of light-absorbing aerosol, brown carbon (BrC) has the potential to affect the atmospheric photochemistry and Earth's energy budget. A comprehensive field campaign was carried out along the transport pathway of Asian dust during the spring of 2016, including a desert site (Erenhot), a rural site (Zhangbei), and an urban site (Jinan), in northern China. Optical properties, bulk chemical compositions, and potential sources of water-soluble brown carbon (WS-BrC) were investigated in atmospheric total suspended particulate (TSP) samples.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM were first observed at a background site (Yuzhong site: YZ site) in the northwestern highlands of China in five seasonal campaigns. Compared with major northwestern cities, PAHs and NPAHs at the YZ site were at a lower level but showed consistent seasonal differences. The PAH and NPAH concentrations peaked in the winter campaigns, which were 36.

View Article and Find Full Text PDF

Natural aeolian dust (AD) particles are potential carriers of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. The heterogeneous interaction between them may lead to worsened air quality and enhanced cytotoxicity and carcinogenicity of ambient particulates in downwind areas, and this topic requires in-depth exploration. In this study, AD samples were collected from four Asian dust sources, and their physical properties and compositions were determined, showing great regional differences.

View Article and Find Full Text PDF

Polarization lidar has been widely used in recent decades to observe the vertical structures of aerosols and clouds in the atmosphere. We developed a dual-polarization lidar system that can detect polarization measurements simultaneously at 355 nm and 532 nm. Dust events and haze episodes over northern China in 2014 were observed by the developed lidar.

View Article and Find Full Text PDF

The detection of cloud and aerosols using a modified retrieval algorithm solely for a ground-based micropulse lidar (MPL) is presented, based on one-year data at the Semi-Arid Climate Observatory and Laboratory (SACOL) site (35.57°N, 104.08°E, 1965.

View Article and Find Full Text PDF