Immunogenic cell death (ICD)-mediated immunization strategies have great potential against breast cancer. However, traditional strategies neglect the increase in the immunosuppressive metabolite, adenosine (ADO), during ICD, leading to insufficient therapeutic outcomes. In this study, it is found that the adenosine A2A receptor (A2AR) is significantly expressed in breast cancer and positively associated with regulatory T (Treg) cells.
View Article and Find Full Text PDFPurpose: Sonodynamic therapy (SDT) is a promising strategy as an "in situ vaccine" to enhance activation of antitumor immune responses in solid tumors. However, the dense extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDAC) lead to hypoxia and limited penetration of most drugs, aggravating the immunosuppressive tumor microenvironment and limiting the efficacy of synergistic sonodynamic immunotherapy. Therefore, it is essential to regulate ECM in order to alleviate tumor hypoxia and enhance the efficacy of sonodynamic immunotherapy for PDAC.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) exhibits an immunosuppressive tumor microenvironment, leading to a low objective response rate when immune checkpoint inhibitors (ICIs) are utilized. The cGAS-STING pathway demonstrates a powerful immune stimulatory effect, nevertheless, activation of this pathway triggers an upregulation of PD-L1, which inhibits the anti-tumor function of immune cells. The present study discovered that knockdown of MEF2D by a siRNA in H22 cells decreases the expression of PD-L1.
View Article and Find Full Text PDFDrug-eluting bead transcatheter arterial chemoembolization (D-TACE) is one of the first-line treatment for intermediate hepatocellular carcinoma (HCC). However, the dual hypoxia microenvironment, due to inherent tumor hypoxia and TACE-induced hypoxia, triggers drug resistance in HCC. To address this challenge, the study develops multicavitary microspheres capable of encapsulating oxygen and harnessing magnetic hyperthermia to enhance oxygen permeability.
View Article and Find Full Text PDFAcinetobacter baumannii is one of the most important pathogens of healthcare-associated infections. The rising prevalence of multidrug-resistant A. baumannii (MRAB) strains and biofilm formation impact the outcome of conventional treatment.
View Article and Find Full Text PDFImmunotherapy with immune checkpoint blockade (ICB) for glioblastoma (GBM) is promising but its clinical efficacy is seriously challenged by the blood-tumor barrier (BTB) and immunosuppressive tumor microenvironment. Here, anti-programmed death-ligand 1 antibodies (aPD-L1) are loaded into a redox-responsive micelle and the ICB efficacy is further amplified by paclitaxel (PTX)-induced immunogenic cell death (ICD) via a co-encapsulation approach for the reinvigoration of local anti-GBM immune responses. Consequently, the micelles cross the BTB and are retained in the reductive tumor microenvironment without altering the bioactivity of aPD-L1.
View Article and Find Full Text PDFMicroglia are believed to be the key immune effectors of the central immune microenvironment, and their dysregulation is associated with neuroinflammation and mood disorders. Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain-containing five (NLRC5) is a new member of the Nod-like receptor family. Recently, NLRC5 has been reported to be expressed by microglia.
View Article and Find Full Text PDFImmunotherapy with immune checkpoint inhibitors (CPIs) shows promising prospects for glioblastoma multiforme (GBM) but with restricted results, mainly attributed to the immunosuppressive tumor microenvironment (TME) and the limited antibody permeability of the blood-tumor barrier (BTB) in GBM. Here, nanovesicles with a macrophage-mimicking membrane are described, that co-deliver chemotactic CXC chemokine ligand 10 (CXCL10), to pre-activate the immune microenvironment, and anti-programmed death ligand 1 antibody (aPD-L1), to interrupt the immune checkpoint, aiming to enhance the effect of GBM immunotherapy. Consequently, the tumor tropism of the macrophage membrane and the receptor-mediated transcytosis of the angiopep-2 peptide allow the nanovesicle to effectively cross the BTB and target the GBM region, with 19.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with a five-year survival rate of approximately 5-10%. The immune checkpoint blockade represented by PD-1/PD-L1 inhibitors has been effective in a variety of solid tumors but has had little clinical response in pancreatic cancer patients. The unique suppressive immune microenvironment is the primary reason for this outcome, and it is essential to identify key targets to remodel the immune microenvironment.
View Article and Find Full Text PDFThe vibrational, mechanical, electronic, and optical properties of the ε-O phase in the pressure range of 11.4-70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O is dynamically unstable at 60 GPa.
View Article and Find Full Text PDFFront Pharmacol
September 2022
(Maxim.) Franquet is a unique species in China with a long history of medicinal use, which has the effects of detoxifying, dissolving lumps and dispersing swellings. And it is commonly used to treat many diseases, such as carbuncle and sore, acute mastitis, mammary cancer, scrofula and subcutaneous nodule traditionally.
View Article and Find Full Text PDFNucleotide oligomerization domain-like receptors (NLRs), belonging to a large family of pattern recognition receptors, participate in the host's first line of defense against invading pathogens. Caspase recruitment domain containing 5 (NLRC5), the largest member in the NLR family, is demonstrated to be involved in the innate immune response and inflammatory diseases far and wide. Recent studies report that NLRC5 is associated with some central nervous system (CNS) diseases.
View Article and Find Full Text PDFSince severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific T cells have been found to play essential roles in host immune protection and pathology in patients with coronavirus disease 2019 (COVID-19), this study focused on the functional validation of T cell epitopes and the development of vaccines that induce specific T cell responses. A total of 120 CD8 T cell epitopes from the E, M, N, S, and RdRp proteins were functionally validated. Among these, 110, 15, 6, 14, and 12 epitopes were highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively; in addition, four epitopes from the S protein displayed one amino acid that was distinct from the current SARS-CoV-2 variants.
View Article and Find Full Text PDFThe expression and function of immune molecules, such as major histocompatibility complex (MHC), within the developing and adult brain have been discovered over the past few years. Studies utilizing classical class I MHC knockout animals suggest that these molecules, in fact, play essential roles in the establishment, function, and modification of synapses in the CNS. Altered neuronal expression of class I MHC, as has been reported in pathological conditions, leads to aberrations in neuronal development and repair.
View Article and Find Full Text PDFPaclitaxel (PTX) is a first-line chemotherapeutic drug for breast cancer, but PTX resistance often occurs in metastatic breast cancer. In addition, due to the poor targeting of chemotherapeutic drugs and the presence of the blood-brain barrier (BBB), it is hard to effectively treat brain metastatic breast cancer using paclitaxel. Thus, it is urgent to develop an effective drug delivery system for the treatment of brain metastatic breast cancer.
View Article and Find Full Text PDFIn the immune system, Major Histocompatibility Complex class I (MHC-I) molecules are located on the surface of most nucleated cells in vertebrates where they mediate immune responses. Accumulating evidence indicates that MHC-I molecules are also expressed in the central nervous system (CNS) where they play important roles that are significantly different from their immune functions. Classical MHC-I molecules are temporally and spatially expressed in the developing and adult CNS, where they participate in the synaptic formation, remodeling and plasticity.
View Article and Find Full Text PDFHepatitis B virus (HBV) infection is an important problem threatening human health. After HBV virus invades human body, it may assemble a complete virus particle in the cytoplasm to trigger the immune reaction, especially the interaction between the HBV virus and the host that mediated by CD8 T cell. We collected the sequences of HBV from the HBVdb database, then screened candidate mutation sites in Chinese, European and American populations based on conservation and physicochemical properties.
View Article and Find Full Text PDFTumor metastasis to brain is the main clinical manifestation of patients with advanced breast cancer, leading to poor survival prognosis. In order to detect the early incidence of brain metastasis, it is urgent to develop hypersensitive contrast agents for multimode imaging. In this study, PEG-phospholipids coated, a phage play derived peptide, BRBP1 peptide modified ultra-small iron oxide nanoparticles were prepared for targeted NIRF and MR imaging of breast cancer brain metastasis.
View Article and Find Full Text PDFObjective: Targeting in vivo has been a spotlight for precise medicine. Multiple strategies have been proposed for this issue. However, the efficiency of solely biochemical strategies currently remains to be improved.
View Article and Find Full Text PDFMajor histocompatibility Complex class I (MHC I) molecules are ubiquitously expressed, being found in most nucleated cells, where they are central mediators of both the adaptive and innate immune responses. Recent studies have shown that MHC I are also expressed in the developing brain where they participate in synapse elimination and plasticity. Up-regulation of MHC I within the developing brain has been reported, however, the mechanism(s) regulating this developmental up-regulation of neuronal MHC I remains unknown.
View Article and Find Full Text PDFAim: To explore the circular RNA (circRNA) profile of breast cancer brain metastasis (BCBM).
Materials & Methods: RNA-seq was performed to identify the circRNA expression profile of brain metastatic breast cancer cell line 231-BR, in comparison with its parental nonspecific metastatic cell line MDA-MB-231.
Results: A total of 215 upregulated and 191 downregulated circRNAs were identified.
Since the expected therapeutic results of ischemic stroke are strictly time dependent, early and accurate diagnosis as well as short intervals between diagnosis and treatment are key factors for the survival of stroke patients. In this study, we fabricated platelet (PLT) membrane-derived biomimetic nanobubbles (PNBs) for timely perfusion intervention and ultrasound imaging of acute ischemic stroke. The PNBs are fabricated by sonication-assisted reassembly of repeatedly freeze-thawed live platelet-derived PLT membrane vesicles (PMVs).
View Article and Find Full Text PDFNeuronal MHC class I proteins have been previously reported to regulate synaptic plasticity. Several reports indicate MHC class I proteins are expressed early during development of the nervous system, suggesting they may also play a role in neuronal development. Using cultured cortical neurons, we show MHC class I proteins aggregate at specific sites in neuronal cell bodies, which overlap with the actin cytoskeleton.
View Article and Find Full Text PDFObjective: Hepatocellular carcinoma (HCC) is the fifth most common tumor worldwide. The discovery of new therapies against HCC is highly dependable on finding molecules which play essential roles in cancer development. The objective of this study was to evaluate the activity of gamma secretase (γ-secretase), and the antitumor effects of a γ-secretase inhibitor (GSI) in HCC.
View Article and Find Full Text PDF