Ubiquitin-conjugating enzymes (E2s) are key for regulating protein function and turnover via ubiquitination but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan.
View Article and Find Full Text PDFProtein quality control is important for healthy aging and is dysregulated in age-related diseases. The autophagy-lysosome and ubiquitin-proteasome are key for proteostasis, but it remains largely unknown whether other proteolytic systems also contribute to maintain proteostasis during aging. Here, we find that expression of proteolytic enzymes (proteases/peptidases) distinct from the autophagy-lysosome and ubiquitin-proteasome systems declines during skeletal muscle aging in Drosophila.
View Article and Find Full Text PDFCachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia.
View Article and Find Full Text PDFDefects in protein quality control are the underlying cause of age-related diseases. The western blot analysis of detergent-soluble and insoluble protein fractions has proven useful in identifying interventions that regulate proteostasis. Here, we describe the protocol for such analyses in tissues, mouse skeletal muscle, human organoids, and HEK293 cells.
View Article and Find Full Text PDFRecent evidence indicates that the composition of the ribosome is heterogeneous and that multiple types of specialized ribosomes regulate the synthesis of specific protein subsets. In Drosophila, we find that expression of the ribosomal RpS28 protein variants RpS28a and RpS28-like preferentially occurs in the germline, a tissue resistant to aging and that it significantly declines in skeletal muscle during aging. Muscle-specific overexpression of RpS28a at levels similar to those seen in the germline decreases early mortality and promotes the synthesis of a subset of proteins with known anti-aging roles, some of which have preferential expression in the germline.
View Article and Find Full Text PDFNeurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging.
View Article and Find Full Text PDFOrganisms use endogenous clocks to adapt to the rhythmicity of the environment and to synchronize social activities. Although the circadian cycle is implicated in aging, it is unknown whether natural variation in its function contributes to differences in lifespan between populations and whether the circadian clock of specific tissues is key for longevity. We have sequenced the genomes of strains with exceptional longevity that were obtained via multiple rounds of selection from a parental strain.
View Article and Find Full Text PDFCurr Opin Pharmacol
June 2017
Sarcopenia, the loss of skeletal muscle mass and strength in the aged, is an important medical condition but its etiology is incompletely understood. Because autophagy promotes myofiber atrophy in the young, it was believed that autophagy inhibition would prevent sarcopenia. However, recent studies have revealed that autophagy actually maintains muscle mass and that its function declines during muscle aging.
View Article and Find Full Text PDFRationale: Necrosis is one of the main forms of cardiomyocyte death in heart disease. Recent studies have demonstrated that certain types of necrosis are regulated and programmed dependent on the activation of receptor-interacting serine/threonine-protein kinase (RIPK) 1 and 3 which may be negatively regulated by Fas-associated protein with death domain (FADD). In addition, microRNAs and long noncoding RNAs have been shown to play important roles in various biological processes recently.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs, and they bind to complementary sequences in the three prime untranslated regions (3' UTRs) of target mRNA transcripts, thereby inhibiting mRNA translation or promoting mRNA degradation. Excessive reactive oxygen species (ROS) can cause cell-damaging effects through oxidative modification of macromolecules leading to their inappropriate functions. Such oxidative modification is related to cancers, aging, and neurodegenerative and cardiovascular diseases.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of small noncoding RNAs that mediate posttranscriptional gene silencing. Mitochondrial fission participates in the induction of apoptosis. It remains largely unknown whether miRNAs can regulate mitochondrial fission.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small, single-stranded, noncoding RNAs that function as negative regulators of gene expression. They are transcribed from endogenous DNA and form hairpin structures (termed as pre-miRNAs) that are processed to form mature miRNAs. It remains largely unknown as to the molecular consequences of the natural genetic variation in pre-miRNAs.
View Article and Find Full Text PDFApoptosis can occur in the myocardium under a variety of pathological conditions, including myocardial infarction and heart failure. The forkhead family of transcription factor Foxo3a plays a pivotal role in apoptosis; however, its role in regulating cardiac apoptosis remains to be fully elucidated. We showed that enforced expression of Foxo3a inhibits cardiomyocyte apoptosis, whereas knockdown of endogenous Foxo3a sensitizes cardiomyocytes to undergo apoptosis.
View Article and Find Full Text PDFCardiac hypertrophic program is a chronic, complex process, and occurs in response to long-term increases of hemodynamic load related to a variety of pathophysiological conditions. Mitochondria, known as "the cellular power plants", occupy about one-third of cardiomyocyte volume and supply roughly 90% of the adenosine triphosphate (ATP). Impairment of energy metabolism has been regarded as one of the main pathogenesis of cardiac hypertrophy.
View Article and Find Full Text PDFMitochondria are subcellular organelles that provide energy for the cell. They form a dynamic tubular network and play an important role in maintaining the cell function and integrity. Heart is a powerful organ that supplies the motivation for circulation, thereby requiring large amounts of energy.
View Article and Find Full Text PDFMitochondria constantly undergo fusion and fission, two necessary processes for the maintenance of organelle fidelity. The abnormal mitochondrial fission participates in the pathogenesis of many diseases, but its regulation remains poorly understood. Here we show that miR-484 can suppress translation of mitochondrial fission protein Fis1, and inhibit Fis1-mediated fission and apoptosis in cardiomyocytes and in the adrenocortical cancer cells.
View Article and Find Full Text PDFMyocardial infarction is a leading cause of mortality worldwide. Here we report that modulation of microRNA-499 (miR-499) levels affects apoptosis and the severity of myocardial infarction and cardiac dysfunction induced by ischemia-reperfusion. We found that both the α- and β-isoforms of the calcineurin catalytic subunit are direct targets of miR-499 and that miR-499 inhibits cardiomyocyte apoptosis through its suppression of calcineurin-mediated dephosphorylation of dynamin-related protein-1 (Drp1), thereby decreasing Drp1 accumulation in mitochondria and Drp1-mediated activation of the mitochondrial fission program.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2009
Cardiac hypertrophy is accompanied by maladaptive cardiac remodeling, which leads to heart failure or sudden death. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that mediate posttranscriptional gene silencing. Recent studies show that miRNAs are involved in the pathogenesis of hypertrophy, but their signaling regulations remain to be understood.
View Article and Find Full Text PDF