In the process of ocean exploration, highly accurate and sensitive measurements of seawater temperature and pressure significantly impact the study of seawater's physical, chemical, and biological processes. In this paper, three different package structures, V-shape, square-shape, and semicircle-shape, are designed and fabricated, and an optical microfiber coupler combined Sagnac loop (OMCSL) is encapsulated in these structures with polydimethylsiloxane (PDMS). Then, the temperature and pressure response characteristics of the OMCSL, under different package structures, are analyzed by simulation and experiment.
View Article and Find Full Text PDFMetal coatings can protect the fragile optical fiber sensors and extend their life in harsh environments. However, simultaneous high-temperature strain sensing in a metal-coated optical fiber remains relatively unexplored. In this study, a nickel-coated fiber Bragg grating (FBG) cascaded with an air bubble cavity Fabry-Perot interferometer (FPI) fiber optic sensor was developed for simultaneous high temperature and strain sensing.
View Article and Find Full Text PDFThe magnetic field is a vital physical quantity in nature that is closely related to human production life. Magnetic field sensors (namely magnetometers) have significant application value in scientific research, engineering applications, industrial productions, and so forth. Accompanied by the continuous development of magnetic materials and fiber-sensing technology, fiber sensors based on the Magneto-Refractive Effect (MRE) not only take advantage in compact structure, superior performance, and strong environmental adaptability but also further meet the requirement of the quasi-distributed/distributed magnetic field sensing; they manifest potential and great application value in space detection, marine environmental monitoring, etc.
View Article and Find Full Text PDF