CNS Neurosci Ther
November 2024
Purpose: To develop a tool for automated subtype classification and segmentation of intracranial hemorrhages (ICH) on CT scans of patients with traumatic brain injury (TBI). Furthermore, outcome prediction for patients can effectively facilitate patient management.
Methods: This study presents a cascade framework for two-stage segmentation and multi-label classification.
Tobacco features chemical compositions different from that of raw lignocellulosic biomass. Currently, the performance of network models, like Bio-Chemical Percolation Devolatilization (Bio-CPD), on tobacco pyrolysis is unclear, and only global kinetics have been proposed for tobacco devolatilization, which does not have the versatility for a wide range of heating conditions and tobacco types. To address this issue, the present work first assessed the performance of the Bio-CPD model on tobacco pyrolysis through an study, which showed large deviations.
View Article and Find Full Text PDF