A hydroponic experiment was conducted to investigate the variations in membrane permeabilities, chlorophyll contents, antioxidase activities, the ascorbic acid (AsA)-glutathione (GSH) cycle, and the glyoxalase system in the leaves of with 0 ∼ 15.0 mg L lead ion (Pb) exposure. The concentrations of Pb accumulated in the plant roots, stems, and leaves were also evaluated.
View Article and Find Full Text PDFis previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of was the primary location for Cd accumulation.
View Article and Find Full Text PDFMethylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms.
View Article and Find Full Text PDFIdentifying the physiological response and tolerance mechanism of wetland plants to heavy metal exposure can provide theoretical guidance for an early warning for acute metal pollution and metal-contaminated water phytoremediation. A hydroponic experiment was employed to investigate variations in the antioxidant enzyme activity, chlorophyll content, and photosynthesis in leaves of Monochoria korsakowii under 0.12 mM cadmium ion (Cd) acute (4 d) and chronic (21 d) exposure.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
February 2023
Phenylpropanoid metabolic pathway is one of the most important secondary metabolic pathways in plants. It directly or indirectly plays an antioxidant role in plant resistance to heavy metal stress, and can improve the absorption and stress tolerance of plants to heavy metal ions. In this paper, the core reactions and key enzymes of the phenylpropanoid metabolic pathway were summarized, and the biosynthetic processes of key metabolites such as lignin, flavonoids and proanthocyanidins and relevant mechanisms were analyzed.
View Article and Find Full Text PDFTo identify the tolerance mechanisms of wetland plants exposed to heavy metal, a hydroponic experiment was used to investigate variations in photosynthetically physiological parameters and antioxidant enzyme activities in leaves of Monochoria korsakowii exposed to 0.05, 0.15, 0.
View Article and Find Full Text PDFA pot experiment was conducted to explore the effects of copper (Cu) tailings with various proportions in the substrate on seed germination and morphological traits of the plant. Concurrently, to identify the adaptive and tolerance strategies of the plant to Cu tailings, the uptake and accumulation of the plant to heavy metals, variations in soil enzymatic activities, and metal speciation in the blank, rhizospheric, and non-rhizospheric soils were estimated. Cu tailings at 25% proportion in the substrate exerted no significant negative effects on seed germination and seedling growth.
View Article and Find Full Text PDFPistia stratiotes is a cadmium (Cd) hyperaccumulating plant with strong bioaccumulation and translocation capacity for Cd. A hydroponic experiment was used to evaluate the combined effect of Zinc (Zn) and Cd at different concentrations on leaf growth and metabolism of P. stratiotes.
View Article and Find Full Text PDFPontederia cordata is previously demonstrated a cadmium (Cd) tolerant plant, and also a candidate for the phytoremediation of heavy-metal-contaminated wetlands. A hydroponic experiment was used to investigate variations in photosynthetic gas exchange parameters, antioxidative activities, chlorophyll and secondary metabolite contents, and transcriptome in leaves of the plant exposed to 0.44 mM Cd for 0 h, 24 h, and 48 h.
View Article and Find Full Text PDFInt J Phytoremediation
September 2022
can not only effectively remediate eutrophic water, but also displays strong absorption and bioaccumulation abilities for heavy metals. However, it has not been well-understood how the plant resists the combined stress of heavy metals. In these experiments, the morphophysiological traits, the ascorbate-glutathione (AsA-GSH) cycle, the glyoxalase system, and the contents of zinc (Zn) and cadmium (Cd) were investigated under Zn and Cd co-pollution.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2021
To elucidate the mechanism of succinic acid (SA) inhibition of Microcystis aeruginosa, the chlorophyll fluorescence transients, photosynthesis, photosynthetic electron transport activity, and gene expression of M. aeruginosa were evaluated under various doses of SA. The results demonstrated that, after treatment with 60 mg L SA for 1 h, the chlorophyll fluorescence transients and related parameters changed significantly, indicating that the function and structure of photosynthetic apparatuses of Microcystis were seriously damaged.
View Article and Find Full Text PDFPontederia cordata can tolerate heavy metal toxicity and possesses great potential for phytoremediation of heavy-metal-contaminated wetlands, yet how it copes with heavy metal stress has still not been determined. Hydroponic experiments were used to assess the effects of various levels of Cd on the photosynthesis and activity of redox-regulatory systems in the plant leaves, and we also sought to elucidate the tolerance mechanism of the plant to Cd by investigating Cd enrichment characteristics and chemical forms. The plant can manage a low cadmium concentration (≤0.
View Article and Find Full Text PDFPontederia cordata is a heavy metal accumulator, while the heavy metal tolerance mechanisms of this plant are not well understood. Hydroponic experiments were used to assess the effects of Cd on antioxidative activities, osmoregulatory substances and photosynthesis in leaves. Exposure of 5 mg L Cd for 7 days, the photosynthetic apparatus functioned normally and sustained a relatively high photosynthetic rate, and good growth was observed.
View Article and Find Full Text PDFTwo solution cultures with different oxygen pretreatments were used to investigate (ⅰ) the variation in the radial oxygen loss in the roots and root morphology of Triarrhena sacchariflora seedlings and (ii) their tolerance to Cu and Cd, as well as both the metal uptake and accumulation by pretreated seedlings. Developed aerenchyma in the roots was induced by the hypoxia pretreatment (HP) and aeration pretreatment (AP), for which root porosity, respectively, increased by 45.76%-53.
View Article and Find Full Text PDFHydroponic experiments were conducted to assess the accumulation, translocation, and chemical forms of lead (Pb) and cadmium (Cd) in the roots, stems, and leaves of Triarrhena sacchariflora seedlings and the associated variation in leaf ultrastructure. The leaves and leaf ultrastructure showed no significant symptoms of toxicity with 0.05 mM Pb or 0.
View Article and Find Full Text PDF