The study of quantum geometry effects in materials has been one of the most important research directions in recent decades. The quantum geometry of a material is characterized by the quantum geometric tensor of the Bloch states. The imaginary part of the quantum geometry tensor gives rise to the Berry curvature while the real part gives rise to the quantum metric.
View Article and Find Full Text PDFSingle-component organic solar cells based on double cable polymers have achieved remarkable performance, with DCPY2 reaching a high efficiency of over 13%. In this study, DCPY2 is further optimized with an efficiency of 13.85%, maintaining a high fill factor (FF) without compromising the short circuit current.
View Article and Find Full Text PDFTo investigate the higher order topology in MoTe, the supercurrent interference phenomena in Nb/MoTe/Nb planar Josephson junctions have been systematically studied. By analyzing the obtained interference pattern of the critical supercurrents and performing a comparative study of the edge-touched and untouched junctions, it's found that the supercurrent is dominated by the edges, rather than the bulk or surfaces of MoTe. An asymmetric Josephson effect with a field-tunable sign is also observed, indicating the nontrivial origin of the edge states.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
September 2022
Two previously undescribed steroidal alkaloids, compounds 1-2, along with two known ones(3-4), were isolated from the 80% ethanol extract of ripe berries of Solanum nigrum by chromatographic methods, including silica gel, ODS, and HPLC. Based on spectroscopic and chemical evidence, including IR, NMR, and HR-ESI-MS data, the structures of the isolated compounds were identified as 12β,27-dihydroxy solasodine-3-O-β-D-glucopyranoside(1), 27-hydroxy solasodine-3-O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(2), solalyraine A(3), and 12β,27-dihydroxy solasodine(4). Compounds 1-2 were tested for their potential effects against the proliferation of A549 cells, which revealed that compounds 1-2 had weak cytotoxic activity.
View Article and Find Full Text PDFStrain in two-dimensional (2D) materials has attracted particular attention because of the remarkable modification of electronic and optical properties. However, emergent electromechanical phenomena and hidden mechanisms, such as strain-superlattice-induced topological states or flexoelectricity under strain gradient, remain under debate. Here, using scanning photocurrent microscopy, we observe significant photocurrent enhancement in hybrid vertical junction devices made of strained few-layer graphene and InGaN quantum dots.
View Article and Find Full Text PDFEight undescribed, along with five known steroidal alkaloids were isolated from Solanum nigrum L., a plant used in traditional Chinese medicine. Their structures were elucidated by NMR, HR-ESI-MS, and IR spectroscopy.
View Article and Find Full Text PDFAtomically thin monolayer semiconducting transition metal dichalcogenides (TMDs), exhibiting direct band gap and strong light-matter interaction, are promising for optoelectronic devices. However, an efficient band alignment engineering method is required to further broaden their practical applications as versatile optoelectronics. In this work, the band alignment of two vertically stacked monolayer TMDs using the chemical vapor deposition (CVD) method is effectively tuned by two strategies: 1) formulating the compositions of MoS Se alloys, and 2) varying the twist angles of the stacked heterobilayer structures.
View Article and Find Full Text PDFThe surface orientation dependence on the hydrogen evolution reaction (HER) performance of topological crystalline insulator (TCI) SnTe thin films is studied. Their intrinsic activities are determined by linear sweep voltammetry and cyclic voltammetry measurements. It is found that SnTe (001) and (111) surfaces exhibit intrinsic activities significantly larger than the (211) surface.
View Article and Find Full Text PDFMonolayer transition metal dichalcogenides (ML-TMDCs) are a versatile platform to explore the transport dynamics of the tightly bound excitonic states. The diffusion of neutral excitons in various ML-TMDCs has been observed. However, the transport of charged excitons (trions), which can be driven by an in-plane electric field and facilitate the formation of an excitonic current, has yet been well investigated.
View Article and Find Full Text PDFAround 9% of the adult population in the world (463 million) suffer from diabetes mellitus. Most of them (~90%) belong to type 2 diabetes mellitus (T2DM), which is a common chronic metabolic disorder, and the number of cases has been reported to increase each year. Zucker diabetic fatty (ZDF) rat provides a successful animal model to study the pathogenesis of T2DM.
View Article and Find Full Text PDFThough CHNHPbBr single crystals are frequently applied in various optoelectronic devices due to their favorable cuboid geometry, superior optoelectronic properties, and better stability than CHNHPbI, CHNHPbBr polycrystalline films normally show poorer morphology with scattered crystals than their iodide counterparts, inherently due to their different crystallization habits. In this work, a facile process based on a hot methylamine-based precursor with high viscosity and concentration is demonstrated to counteract rapid ion diffusion. The precursor also has special features including a large colloidal size, a solid form at room temperature, and fast crystallization offered by the easy evacuation of methylamine.
View Article and Find Full Text PDFIn this study, seven previously undescribed steroidal glycoalkaloids, compounds 1-7, were isolated from Solanum lyratum, along with two known ones (8 and 9). Comprehensive spectroscopy techniques were used to determine their structures. Although 1-8 only showed a weak inhibitory effect on the proliferation of the tumor-derived vascular endothelial cells, however, in a former study we found both total steroidal glycoalkaloids from Solanum lyratum (TSGS) and 9 significantly inhibited tumor angiogenesis and its mechanism was linked to its ability to interfere with cell membrane lipid rafts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2020
The recent discovery of the interfacial superconductivity (SC) of the BiTe/FeTe heterostructure has attracted extensive studies due to its potential as a novel platform for trapping and controlling Majorana fermions. Here we present studies of another topological insulator (TI)/FeTe heterostructure, SbTe/FeTe, which also has an interfacial 2-dimensional SC. The results of transport measurements support that reduction of the excess Fe concentration of the FeTe layer not only increases the fluctuation of its antiferromagnetic (AFM) order but also enhances the quality of the SC of this heterostructure system.
View Article and Find Full Text PDFMonolayer transition metal dichalcogenides (TMDCs) are an ideal platform for multi-carrier bound states, the excitons and trions of which have been well identified and investigated. However, the formation and identification of biexcitons with certain configurations are more complicated. Here, we report a strategy to generate the hole-trion bound state, i.
View Article and Find Full Text PDFQuantitative analysis of the weak antilocalization (WAL) effect of topological surface states in topological insulators is of tremendous importance. The major obstacle to achieve accurate results is how to eliminate the contribution of the anisotropic magnetoconductance of bulk states when the Fermi level lies in bulk bands. Here, we demonstrate that we can analyze quantitatively and accurately the WAL effect of topological surface states in topological insulator, BiSbTeSe (BSTS), by measuring the anisotropic magnetoconductance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Multicomponent quasi-two-dimensional perovskites (Q-2DPs) have efficient luminescence and improved stability, which are highly desirable for light-emitting diode and perovskite solar cell (PSC). However, the lack of radiative recombination at room temperature is still not well understood and the performance of PSC is not good enough as well. The open-circuit voltage ( V) is even lower than that of three-dimensional (3D) PSC with a narrower band gap.
View Article and Find Full Text PDFHybrid perovskite thin films are prone to producing surface vacancies during the film formation, which degrade the stability and photovoltaic performance. Passivation via post-treatment can heal these defects, but present methods are slightly destructive to the bulk of 3D perovskite due to the solvent effect, which hinders fabrication reproducibility. Herein, nondestructive surface/interface passivation using 4-fluoroaniline (FAL) is established.
View Article and Find Full Text PDFBiomed Pharmacother
December 2018
An-te-xiao capsule consists of total alkaloids from the dried whole plantof Solanum lyratum, and showed antitumor effects in our previous study. However, its inhibitory effect on multiple non-small cell lung cancer (NSCLC) cell lines and the underlying mechanisms have not been elucidated clearly. This study sought to investigate the inhibitory effects of An-te-xiao capsule on three main types of NSCLC cell lines (A549, NCI-H460, and NCI-H520) in vitro and in vivo and the underlying mechanisms of action including its potential anti-angiogenesis effects.
View Article and Find Full Text PDFvan der Waals heterostructures that are usually formed using atomically thin transition-metal dichalcogenides (TMDCs) with a direct band gap in the near-infrared to the visible range are promising candidates for low-dimension optoelectronic applications. The interlayer interaction or coupling between two-dimensional (2D) layer and the substrate or between adjacent 2D layers plays an important role in modifying the properties of the individual 2D material or device performances through Coulomb interaction or forming interlayer excitons. Here, we report the realization of quasi-zero-dimensional (0D) photon emission of WS in a coupled hybrid structure of monolayer WS and InGaN quantum dots (QDs).
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
July 2018
Standard decoction of traditional Chinese medicine (TCM) is prepared by standardized process, and can be used as references to evaluate the quality of dosage forms such as decoction and dispensing granules. In order to determine the quality evaluation method for standard decoction of Chrysanthemi Flos and investigate its application, 10 batches of white chrysanthemum of Hangzhou were collected to prepare the standard decoction of white chrysanthemum of Hangzhou with standardized process parameters. Parameters such as traits, relative density, pH value, extraction ratio, transfer rate and fingerprint were selected as the indexes for quality evaluation.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
June 2018
The hawthorn leaves have the effect of activating blood, removing blood stasis, regulating qi through the veins, dissolving turbidity and lowering lipid. Procyanidinis is one of its main active components and plays an important role in regulating vasoactivity. Previous studies showed that the regulating effect of procyanidins was related to its regulation on nitric oxide secretion from vascular endothelial cells, and this effect was dependent on the extracellular calcium concentration, suggesting that the changes in intracellular calcium ion concentration in endothelial cells may play a key role in this process.
View Article and Find Full Text PDFLarge-scale and highly ordered 3D perov-skite nanowire (NW) arrays are achieved in nanoengineering templates by a unique vapor-solid-solid reaction process. The excellent material properties, in conjunction with the high integration density of the NW arrays, make them promising for 3D integrated nanoelectronics/optoelectronics. Image sensors with 1024 pixels are assembled and characterized to demonstrate the technological potency.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2015
The accurate medical treatment is based on the information of the genome, which is the best treatment for the patients. Population pharmacokinetic study can be formulated according to the individual differences of patients to the dose, in the accurate medical model which has a unique advantage. At present, there are many problems such as adverse drug reaction in Chinese traditional medicine, and it is necessary to introduce a group of medicine on the basis of precise medical treatment.
View Article and Find Full Text PDFThe discovery of two-dimensional superconductivity in Bi2Te3/FeTe heterostructures provides a new platform for the search of Majorana fermions in condensed matter systems. Since Majorana fermions are expected to reside at the core of the vortices, a close examination of the vortex dynamics in superconducting interface is of paramount importance. Here, we report the robustness of the interfacial superconductivity and 2D vortex dynamics in four as-grown and aged Bi2Te3/FeTe heterostructure with different Bi2Te3 epilayer thickness (3, 5, 7, 14 nm).
View Article and Find Full Text PDFA large negative magnetoresistance (NMR) is anticipated in topological semimetals in parallel magnetic fields, demonstrating the chiral anomaly, a long-sought high-energy-physics effect, in solid-state systems. Recent experiments reveal that the Dirac semimetal Cd3As2 has the record-high mobility and positive linear magnetoresistance in perpendicular magnetic fields. However, the NMR has not yet been unveiled.
View Article and Find Full Text PDF