Publications by authors named "Jiannan Xiao"

Nitrogen (N) deposition rates have notably increased around the world, especially in high-altitude regions like the Qinghai-Tibetan Plateau (QTP). We conducted a six-year comprehensive experiment to simulate nitrogen deposition in an alpine grassland area near Qinghai Lake. Four levels of nitrogen depositions, i.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen deposition helps plants grow better, especially Leymus secalinus, which has become the main plant in the Qinghai-Tibetan Plateau's alpine meadows.
  • Researchers studied how different amounts of nitrogen affect Leymus secalinus's leaf content, hormones, and enzyme activity.
  • They found that specific amino acids like glutamine and aspartic acid are important for the plant's growth when there's more nitrogen, shedding light on how this plant adapts to its environment.
View Article and Find Full Text PDF

The Competitor, Stress Tolerator, and Ruderal (CSR) theory delineates the ecological strategies of plant species. Nevertheless, how these ecological strategies shift at the levels of individuals, functional groups and plant communities to cope with increasing nitrogen deposition remains unclear. In this study, simulated nitrogen deposition experiments were performed in high-altitude grasslands of alpine meadows and alpine steppe on the Qinghai-Tibetan Plateau (QTP) by employing the strategy and functional type framework (StrateFy) methodology to evaluate plant CSR strategies.

View Article and Find Full Text PDF

Earthquakes are environmental disturbances affecting ecosystem functioning, health, and biodiversity, but their potential impacts on plant-soil interface are still poorly understood. In this study, grassland habitats in areas near and away from the seismo-fault in Madou, a region typical of alpine conditions on the Qinghai-Tibetan Plateau, were randomly selected. The impacts of earthquake on soil properties and plant nutrient content in the short term were emphasized, and their potential relationships with community diversity and productivity were examined.

View Article and Find Full Text PDF

Aim: To determine the kinase activity profiles of human pancreatic beta cells downstream of glucagon-like peptide-1 receptor (GLP-1R) balanced versus biased agonist stimulations.

Materials And Methods: This study analysed the kinomic profiles of human EndoC-βh1 cells following vehicle and GLP-1R stimulation with the pharmacological agonist exendin-4, as well as exendin-4-based biased derivatives exendin-phe1 and exendin-asp3 for acute (10-minute) versus sustained (120-minute) responses, using PamChip protein tyrosine kinase and serine/threonine kinase assays. The raw data were filtered and normalized using BioNavigator.

View Article and Find Full Text PDF

Warming and N (nitrogen) deposition are the two main driving factors of global change. We examined the effects of increased N deposition (8 kg ha year) and warming, as well as their combined effect on the leaf photosynthetic pigments of Leymus secalinus, which is one of the key alpine plants growing in different grassland habitats on Qinghai-Tibetan plateau. In 2014, the experiments were established in 12 plots (2×5m) of three types of habitats including alpine meadow (AM), alpine steppe (AS), and cultivated grassland (CG) with the following treatments: CK (control treatment), N (only N deposition), W (only warming), and W&N (warming combined with N deposition).

View Article and Find Full Text PDF

Biochar and nitrogen (N) fertilizer application can increase soil carbon sequestration and enhance soil nutrient cycling. However, few studies have systematically explored the effects of the long-term application of biochar and N fertilizer on soil multifunctionality and characterized its driving factors. Based on an 8-year biochar paddy-field experiment in anthropogenic alluvial alkaline soil in northwest China, we measured eleven soil functions associated with soil carbon sequestration and nutrient cycling and four potential factors (soil bacterial and fungal richness, pH, and aggregates) governing soil functions to investigate the effects of three biochar rates (C0, no biochar; C1, 4.

View Article and Find Full Text PDF

Background: N (nitrogen) and P (phosphorus) play important roles in plant growth and fitness, and both are the most important limiting factors that affect grassland structure and function. However, we still know little about plant physiological responses to N and P enrichment in alpine grassland of the Qinghai-Tibetan Plateau. In our experiment, five dominant common herbaceous species were selected and their photosynthetic parameters, leaf N content, and aboveground biomass were measured.

View Article and Find Full Text PDF

Climate change has substantially affected plant phenology and growth on the Qinghai-Tibetan Plateau (QTP), while it remains unclear how plant phenology and growth impact the plant biomass under climate change. We used long-term data (from 1997 to 2017) for four plants, Stipa purpurea, Artemisia scoparia, Kobresia humilis and Astragalus laxmannii in the alpine meadow to examine the relationships among multiple climate factors, vegetative growth, reproductive growth, intrinsic growth rate and biomass. The order of returning to green determines the growth strategies of different plants, the earliest plants to green (p < 0.

View Article and Find Full Text PDF

Although human activities have greatly increased nitrogen (N) and phosphorus (P) inputs to the alpine grassland ecosystems, how soil microbial functional genes involved in nutrient cycling respond to N and P input remains unknown. Based on a fertilization experiment established in an alpine meadow of the Qinghai-Tibetan Plateau, we investigated the response of the abundance of soil carbon (C), N, and P cycling genes to N and P addition and evaluated soil and plant factors related to the observed effects. Our results indicated that the abundance of C, N, and P cycling genes were hardly affected by N addition, while P addition significantly increased most of them, suggesting that the availability of P plays a more important role for soil microorganisms than N in this alpine meadow ecosystem.

View Article and Find Full Text PDF

The N deposition rate is notably increased in China, especially in the Qinghai-Tibetan Plateau (QTP). How plants respond to the projected N deposition on the alpine steppe is still in debate. In this study, to investigate the effects of N deposition on the plant community of the alpine steppe, we simulated N deposition at six different N addition rate levels (0, 8, 24, 40, 56, 72 kg N ha y) from 2015 to 2019.

View Article and Find Full Text PDF

Nitrogen (N) deposition has been increasing for decades and has profoundly influenced the structure and function of grassland ecosystems in many regions of the world. However, the impact of N deposition on alpine grasslands is less well documented. We conducted a 3-year field experiment to determine the effects of N deposition on plant species richness, composition, and community productivity in an alpine meadow of the Qinghai-Tibetan Plateau of China.

View Article and Find Full Text PDF

Nitrogen deposition is recognized as one of the major threats to the ecosystem function of alpine grasslands on the Qinghai-Tibetan Plateau (QTP). However, few studies have documented the gradient responses of plant species, functional groups, and communities in alpine grassland ecosystems to various levels of N deposition on the QTP. We applied eight linear mixed-effect models combing acidification, eutrophication, and phosphorus availability to explore if the responses of functional traits (particularly plant height and specific leaf area) of plants from dominant species to functional groups and whole communities in different types of grassland to nitrogen deposition were consistent with the same or different models.

View Article and Find Full Text PDF

Analysis of the spatial variations in river networks and the related influencing factors is crucial for the management and protection of basins. To gain insight into the spatial variations and influencing factors of river networks between large basins, in this study, three river basins from north to south in China (Songhua River Basin, Yellow River Basin and Pearl River Basin) were selected for investigation. First, based on a digital elevation model, different river networks with six drainage accumulation thresholds of three basins were extracted using ArcGIS.

View Article and Find Full Text PDF

Fluoroquinolone antibiotic (FQ) residues, such as ciprofloxacin (CIP) and ofloxacin (OFLX), have aroused public concerns owing to their serious impact in environmental water or food fields which influence human health. A facile and high-performance sensory method for detecting FQs is highly desirable for practical requirements. Herein, we have presented a luminescent Eu-MOF with unique 2D (4-c) {4.

View Article and Find Full Text PDF

Homochiral metal-organic frameworks (HMOFs) have garnered considerable attention due to their extrachiral properties and broad application for chiral recognition. However, assembling a pair of high-quality chiral MOFs for sensing enantiomers precisely is a formidable challenge because of the complicated chiral environment and uncontrollable coordinated conditions. Herein, one pair of homochiral UiO-66 analogues, S-1 (l-AP@UiO-66-(COOH)) and R-1 (d-AP@UiO-66-(COOH)), are reported for chiral recognition.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are emerging as a novel class of conductive materials for the lithium-ion transport. However, developing MOFs with high-performance of lithium ion conductivity is largely limited due to the lack of capability of lithium ion storage in the rigid lattice of the MOF crystals. Herein, an advanced hollow metal-organic framework (ZIF-67@ZIF-8), which can store more lithium ions and transmit them by the wall of the cavity, has been designed and fabricated for the first time.

View Article and Find Full Text PDF

Increased nitrogen (N) deposition can affect ecosystem processes and thus influence plant eco-physiological processes in grasslands. However, how N deposition affects eco-physiological processes of leguminous and non-leguminous forbs in alpine grasslands is understudied. A long-term field experiment using a range of simulated N deposition rates (0, 8, 24, 40, 56, and 72 kg N ha year) was established to examine the effects of N deposition on various eco-physiological parameters in leguminous and non-leguminous forbs in an alpine meadow of the Qinghai-Tibetan Plateau.

View Article and Find Full Text PDF

Due to the disruption by other nonanalyte factors, single-emission probes have been limited in complicated detecting systems. In this work, a pH-modulated luminescence chameleon system based on lanthanide-based MOF (Eu@Mn-MOF), with stable structure and miraculous dual-emitting fluorescent properties, was synthesized by a postsynthetic modification (PSM) strategy of a simple hydrothermal and agitation method. Amazingly, not only can the Eu@Mn-MOF emit a broad emission at 500 nm attributed to the ligand-based fluorescence emission but it can also exhibit the characteristic emission of Eu ions responding to the antenna effect.

View Article and Find Full Text PDF

Warming and Nitrogen (N) deposition are key global changes that may affect eco-physiological process of territorial plants. In this paper, we examined the effects of warming, N deposition, and their combination effect on the physiological performances of . Four treatments were established in an alpine meadow of Qinghai-Tibetan plateau: control (CK), warming (W), N deposition (N), and warming plus N deposition (NW).

View Article and Find Full Text PDF

The design of stimuli-responsive hydrogels is attractive but challenging. A multi-stimuli-responsive chiral metallohydrogel was constructed using a rational approach to design a functional metallohydrogel using chiral organic gelators. The as-synthesized metallohydrogel reported here performed remarkably as a visual sensor for discriminating between (R)-phenylglycinol and (S)-phenylglycinol.

View Article and Find Full Text PDF

A luminescent terbium metal-organic framework [Tb(HPIA)(PIA)(HO)] (Tb-MOF), synthesized by a lanthanide metal ion (Tb) and nitric heterocyclic carboxylic acid ligands HPIA (HPIA = 5-(1-pyrazol-3-yl)isophthalic-acid), was structurally characterized as a three-dimensional skeleton structure in which layered coordination frameworks are connected by hydrogen bonds. Based on the antenna effect, Tb-MOF can emit bright green fluorescence under 254 nm excitation, and the fluorescence emission presents excellent durability in aqueous solutions among a wide pH range. Moreover, the structure of Tb-MOF also possesses outstanding thermal stabilities.

View Article and Find Full Text PDF

Nitrogen (N) deposition may alter physiological process of plants in grassland ecosystem. However, little is known about the response mechanism of individual plants in alpine regions to N deposition. We conducted a field experiment, and three treatments including 0 kg Nhayear (CK), 8 kgNhayear (Low N), and 72 kg N ha year (High N) were established to simulate N deposition in alpine meadow of Qinghai-Tibetan plateau.

View Article and Find Full Text PDF

A unique three-dimensional luminescent metal-organic framework (Cd-MOFs), [Cd(tpbpc)]·2HO·DMF (Htpbpc = 4'-[4,2';6',4″]-terpyridin-4'-yl-biphenyl-4-carboxylic acid; DMF = dimethylformamide), was synthesized and structurally characterized; it exhibits excellent luminescent property and structural stability in aqueous solutions. Interestingly, an unparalleled luminescence-silent system CrO@Cd-MOFs was successfully fabricated by postsynthetic modification of metal-organic frameworks. This luminescence-silent system represents a highly selective and sensitive turn-on luminescent responding to ascorbic acid.

View Article and Find Full Text PDF

Tree boosting, which combines weak learners (typically decision trees) to generate a strong learner, is a highly effective and widely used machine learning method. However, the development of a high performance tree boosting model is a time-consuming process that requires numerous trial-and-error experiments. To tackle this issue, we have developed a visual diagnosis tool, BOOSTVis, to help experts quickly analyze and diagnose the training process of tree boosting.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: