Accurate multiple sequence alignment (MSA) is imperative for the comprehensive analysis of biological sequences. However, a notable challenge arises as no single MSA tool consistently outperforms its counterparts across diverse datasets. Users often have to try multiple MSA tools to achieve optimal alignment results, which can be time-consuming and memory-intensive.
View Article and Find Full Text PDFMultiple sequence alignment is widely used for sequence analysis, such as identifying important sites and phylogenetic analysis. Traditional methods, such as progressive alignment, are time-consuming. To address this issue, we introduce StarTree, a novel method to fast construct a guide tree by combining sequence clustering and hierarchical clustering.
View Article and Find Full Text PDFHAlign is a cross-platform program that performs multiple sequence alignments based on the center star strategy. Here we present two major updates of HAlign 3, which helped improve the time efficiency and the alignment quality, and made HAlign 3 a specialized program to process ultra-large numbers of similar DNA/RNA sequences, such as closely related viral or prokaryotic genomes. HAlign 3 can be easily installed via the Anaconda and Java release package on macOS, Linux, Windows subsystem for Linux, and Windows systems, and the source code is available on GitHub (https://github.
View Article and Find Full Text PDFThe continuous development of sequencing technologies has enabled researchers to obtain large amounts of biological sequence data, and this has resulted in increasing demands for software that can perform sequence alignment fast and accurately. A number of algorithms and tools for sequence alignment have been designed to meet the various needs of biologists. Here, the ideas that prevail in the research of sequence alignment and some quality estimation methods for multiple sequence alignment tools are summarized.
View Article and Find Full Text PDF