Publications by authors named "Jianmei Lu"

Ruthenium dioxide (RuO) is one of the promising catalysts for the acidic oxygen evolution reaction (OER). However, designing RuO catalysts with good activity and stability remains a significant challenge. In this work, we propose the manganese (Mn)-doped RuO assembly as a catalyst for the OER with improved activity and stability.

View Article and Find Full Text PDF

Herein, a new two-dimensional (2D) Ce-organic frameworks (referred to as SLX-4) was achieved by traditional solvothermal conditions. Initial studies of SLX-4 toward Hantzsch reaction showed that good catalytic activity can be obtained under mild conditions, giving the desired 1,4-dihydropyridines in moderate to high yields. The catalyst could be reused at least 4 times keeping good catalytic activity.

View Article and Find Full Text PDF

Removal of organic solvents (such as chloroform, toluene, etc.) in trace amounts using adsorbents from water is a challenge due to their low removal efficiencies and poor selectivities. Herein, four polysulfates (P1-P4) with different flexible group embedded backbones were synthesized via a sulfur fluoride exchange (SuFEx) reaction, and their swelling behaviors in organic solvents were investigated.

View Article and Find Full Text PDF

The compound 2,4,6-trichlorophenol poses significant risks to both the aquatic environment and human health. Its inherent persistence and stability present challenges in achieving complete purification, thus warranting its inclusion as a priority pollutant. The present study reports the development of an amphiphilic small-molecule compound that self-assembles into nanovesicles exhibiting remarkable adsorption and photodegradation capabilities.

View Article and Find Full Text PDF

Organic piezoelectric nanogenerators (PENGs) are attractive in harvesting mechanical energy for various self-powering systems. However, their practical applications are severely restricted by their low output open circuit voltage. To address this issue, herein, we prepared two two-dimensional (2D) covalent organic frameworks (COFs, CityU-13 and CityU-14), functionalized with fluorinated alkyl chains for PENGs.

View Article and Find Full Text PDF

Magnetic field mediated magnetic catalysts provide a powerful pathway for accelerating their sluggish kinetics toward the oxygen evolution reaction (OER) but remain great challenges in acidic media. The key obstacle comes from the production of an ordered magnetic domain catalyst in the harsh acidic OER. In this work, we form an induced local magnetic moment in the metallic Ir catalyst via the significant 3d-5d hybridization by introducing cobalt dopants.

View Article and Find Full Text PDF

Antibiotics are refractory degradable organic pollutants that present a significant hazard to water environments. In this work, a ternary composite (KB/BMO-GO) comprising of graphene oxide (GO), BiMoO (BMO), and a cross-linked benzene polymer (KB) was synthesized and applied to promote the synergistic adsorption-photocatalytic degradation of the refractory pollutant, oxytetracycline (OTC). The inclusion of GO and KB in the composite enhanced the OTC adsorption performance of the catalysts, and the construction of Z-scheme heterojunction promoted the photogenerated charge separation efficiency and broadened the range of light absorption, thereby enhancing the photocatalytic performance.

View Article and Find Full Text PDF

Photocatalysis is a green and environmentally friendly method for degrading dangerous and nonbiodegradable pollutants. In this study, a sequence of metal-free triazine-based electronic donor-acceptor (D-A) conjugated polymers Tr-X (X = Th, BT, BTh) were prepared by D-A configuration regulation between triazine (Tr) and monomers containing N and S, such as thiophene (Th), bithiophene (BTh) and benzothiadiazole (BT) units, for the photocatalytic degradation of bisphenol A (BPA) and benzene contaminants in water under visible light. Among these, Tr-BTh exhibited complete photocatalytic degradation owing to its excellent D-A configuration.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Calcium oxalate crystals play a key role in the development and recurrence of kidney stones (also known as urolithiasis); thus, inhibiting the formation of these crystals is a central focus of urolithiasis prevention and treatment. Previously, we reported the noteworthy in vitro inhibitory effects of Aspidopterys obcordata fructo oligosaccharide (AOFOS), an active polysaccharide of the traditional Dai medicine Aspidopterys obcordata Hemsl. (commonly known as Hei Gai Guan), on the growth of calcium oxalate crystals.

View Article and Find Full Text PDF

Background And Purpose: Nitidine chloride (NC) is a botanical drug renowned for its potent anti-inflammatory, antimalarial, and hepatocellular carcinoma-inhibiting properties; however, its limited solubility poses challenges to its development and application. To address this issue, we have devised a colon-targeted delivery system (NC-CS/PT-NPs) aimed at modulating the dysbiosis of the gut microbiota by augmenting the interaction between NC and the intestinal microbiota, thereby exerting an effect against nonalcoholic fatty liver disease.

Methods: The NC-CS/PT-NPs were synthesized using the ion gel method.

View Article and Find Full Text PDF

Electrochemical reduction of nitrate to ammonia (NORR) is a promising and eco-friendly strategy for ammonia production. However, the sluggish kinetics of the eight-electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd-based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure-activity relationship towards NORR.

View Article and Find Full Text PDF

The polysaccharides extracted from are thought to have anti-urolithiasis activity in Drosophila kidney stones. This study aimed to assess the effects of different extraction solvents on the yield, chemical composition, and bioactivity of polysaccharides from . polysaccharides were extracted by using four solutions: hot water, HCl solution, NaOH solution, and 0.

View Article and Find Full Text PDF

With its efficient nitrogen fixation kinetics, electrochemical lithium-mediated nitrogen reduction reaction (LMNRR) holds promise for replacing Haber-Bosch process and realizing sustainable and green ammonia production. However, the general interface problem in lithium electrochemistry seriously impedes the further enhancement of LMNRR performance. Inspired by the development history of lithium battery electrolytes, here, we extend the ring-chain solvents coupling law to LMNRR system to rationally optimize the interface during the reaction process, achieving nearly a two-fold Faradaic efficiency up to 54.

View Article and Find Full Text PDF

Herein, self-assembled monolayers (SAMs) are constructed on the surface of TiC MXene to improve its environmental stability and piezocatalytic activity. TiC/SAMs-X (X = H, Cl, and NH) was prepared to enhance the piezocatalytic degradation of bisphenol A (BPA) and hydrogen production. Surface-treated TiC exhibits different lattice parameters and symmetry, thus leading to an increased polarization.

View Article and Find Full Text PDF

Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question.

View Article and Find Full Text PDF

Hydrogen has been hailed as the core of the world's future energy architecture. It is imperative to develop catalysts with an efficient and sustained hydrogen evolution reaction (HER) to scale up alkaline/seawater electrolysis, yet significant difficulties and challenges, such as the high usage of precious metals, still remain. In this paper, a metastable-phase hexagonal close-packed (hcp) Ni-based catalyst with ultralow Pt content (3.

View Article and Find Full Text PDF

Ring-opening of phenol in wastewater is the pivotal step in photocatalytic degradation. The highly selective generation of catalytical active species (•OH) to facilitate this process presents a significant scientific challenge. Therefore, a novel approach for designing photocatalysts with single-atom containment in metal-covalent organic frameworks (M-COFs) is proposed.

View Article and Find Full Text PDF

Producing sulfur from a sulfide oxidation reaction (SOR)-based technique using sulfide aqueous solution has attracted considerable attention due to its ecofriendliness. This study demonstrates that NiS-doped cobalt sulfide NiS-CoS-supported NiCo alloy foam can deliver the SOR with superior electrocatalytic activity and robust stability compared to reported non-noble metal-based catalysts. Only 0.

View Article and Find Full Text PDF

Electrocatalytic nitrogen reduction reaction offers a sustainable alternative to the conventional Haber-Bosch process. However, it is currently restricted by low effective overpotential due to the concentration polarization, which arises from accumulated products, ammonium, at the reaction interface. Here, a novel covalent organic polymer with ordered periodic cationic sites is proposed to tackle this challenge.

View Article and Find Full Text PDF

The production of hydrogen peroxide (HO) from oxygen and water is an attractive route for converting solar energy into chemical energy. In order to achieve high solar-to-HO conversion efficiency, floral inorganic/organic (CdS/TpBpy) composite with strong oxygen absorption and S-scheme heterojunction was synthesized by simple solvothermal-hydrothermal methods. The unique flower-like structure increased the active sites and oxygen absorption.

View Article and Find Full Text PDF

A series of room temperature phosphorescent doping systems were constructed. Benzothiazole groups containing heteroatoms (S, N) and heavy atoms (Br) were applied as the host. Their charge-transfered luminescence mechanism was revealed by molecular dynamics simulations and molecular cluster calculations.

View Article and Find Full Text PDF

Converting CO into high-value C2 chemicals such as acetate with high selectivity and efficiency is a critical issue in renewable energy storage. Herein, for the first time we present a vibration-driven piezocatalysis with tin(II) monosulfide (SnS) nanobelts for conversion of CO to acetate with 100 % selectivity, and the highest production rate (2.21 mM h ) compared with reported catalysts.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers used various spectroscopic techniques like NMR, MS, and CD for the structural characterization of these compounds.
  • * Compounds 1 and 6 were found to significantly inhibit Th17 differentiation, indicating potential therapeutic effects, and their mechanism of action does not involve binding to the RORγt receptor.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed innovative membranes made from poly(vinylidene difluoride) and poly(lactic acid) with silver and copper oxide nanoparticles to tackle oil-containing wastewater treatment.
  • These membranes demonstrated exceptional oil attraction in air and water repellency in the presence of oil, achieving over 90% efficiency in separating water-in-oil emulsions.
  • Additionally, the materials are biodegradable and release ions that are effective against both gram-positive and gram-negative bacteria, providing a dual solution for wastewater treatment.*
View Article and Find Full Text PDF

Two-dimensional covalent organic frameworks (2D COFs) are promising for gas sensing owing to the large surface area, abundant active sites, and their semiconducting nature. However, 2D COFs are usually produced in the form of insoluble micro-crystallites. Their poor contacts between grain boundaries severely suppress the conductivity, which are too low for chemresistive gas sensing.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionq8svs16b0h96hef9c95fojtbg8se56oj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once