Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.
View Article and Find Full Text PDFTherapeutic cancer vaccines fail to produce satisfactory outcomes against solid tumors since vaccine-induced anti-tumor immunity is significantly hampered by immunosuppression. Generating an in situ cancer vaccine targeting immunological cold tumor microenvironment (TME) appears attractive. Here, a type of free-field based whole-body ultrasound (US)-driven nanovaccines are constructed, named G5-CHC-R, by conjugating the sonosensitizer, Chenghai chlorin (CHC) and the immunomodulator, resiquimod (R848) on top of a super small-sized dendrimeric nanoscaffold.
View Article and Find Full Text PDFDelayed wound healing is a major complication of diabetes, and is associated with impaired cellular functions. Current treatments are unsatisfactory. Based on the previous reports on microRNA expression in small extracellular vesicles (sEVs), miR-17-5p-engineered sEVs (sEVs) and encapsulated them in gelatin methacryloyl (GelMA) hydrogel for diabetic wounds treatment are fabricated.
View Article and Find Full Text PDFBackground: Persistent hyperglycaemia in diabetes causes functional abnormalities of human dermal fibroblasts (HDFs), partially leading to delayed skin wound healing. Extracellular vesicles (EVs) containing multiple pro-healing microRNAs (miRNAs) have been shown to exert therapeutic effects on diabetic wound healing. The present study aimed to observe the effects of EVs derived from placental mesenchymal stem cells (P-MSC-EVs) on diabetic wound healing and high glucose (HG)-induced senescent fibroblasts and to explore the underlying mechanisms.
View Article and Find Full Text PDFAs emerging pollutants in the environment, nanoplastics (NPs) can cross biological barriers and be enriched in organisms, posing a greatest threat to the health of livestock and humans. However, the size-dependent toxic effects of NPs in higher mammals remain largely unknown. To determine the size-dependent potential toxicities of NPs, we exposed mouse (AML-12) and human (L02) liver cell lines in vitro, and 6-week-old C57BL/6 mice (well-known preclinical model) in vivo to five different sizes of polystyrene NPs (PS-NPs) (20, 50, 100, 200 and 500 nm).
View Article and Find Full Text PDFFerroptosis plays an essential role in the development of diabetes and its complications, suggesting potential therapeutic strategies targeting ferroptosis. Secretory autophagosomes (SAPs) carrying cytoplasmic cargoes have been recognized as novel nano-warrior to defeat diseases. Here, it is hypothesized that SAPs derived from human umbilical vein endothelial cells (HUVECs) can restore the function of skin repair cells by inhibiting ferroptosis to promote diabetic wound healing.
View Article and Find Full Text PDFBackground: Chronic wounds are a complex medical problem. With the difficulty of skin healing, the microbial ecology of chronic wounds is an essential factor affecting wound healing. High-throughput sequencing (HTS) technology is a vital method to reveal the microbiome diversity and population structure of chronic wounds.
View Article and Find Full Text PDFSignal Transduct Target Ther
February 2023
Unhealable diabetic wounds need to be addressed with the help of newer, more efficacious strategies. Exosomes combined with biomaterials for sustained delivery of therapeutic agents are expected to bring new hope for chronic wound treatment. Here, the engineered exosomes modified for efficiently loading miR146a and attaching to silk fibroin patch (SFP) were demonstrated to promote diabetic wound healing.
View Article and Find Full Text PDFChronic non-healing wounds have posed a severe threat to patients mentally and physically. Behavior dysregulation of remaining cells at wound sites is recognized as the chief culprit to destroy healing process and hinders wound healing. Therefore, regulating and restoring normal cellular behavior is the core of chronic non-healing wound treatment.
View Article and Find Full Text PDFEndothelial malfunction is responsible for impaired angiogenesis in diabetic patients, thereby causing the delayed healing progress of diabetic wounds. Exosomes or extracellular vesicles (EVs) have emerged as potential therapeutic vectors carrying drug cargoes to diseased cells. In the present study, EVs were reported as a new treatment for diabetic wounds by delivering VH298 into endothelial cells.
View Article and Find Full Text PDFBackground: Photobiomodulation is a promising therapy for hair loss with negligible side effects. However, the reported effects of photobiomodulation therapy for hair loss are inconsistent.
Objective: To assess the curative effect of photobiomodulation therapy for the treatment of hair loss.
The application of photobiomodulation (PBM) in regenerative medicine has expanded to the treatment of alopecia caused by various reasons. However, the mechanisms responsible for its effects are poorly understood. Here, we aimed to investigate the effects of PBM on hair regeneration in injured skin and to explore the underlying mechanisms.
View Article and Find Full Text PDFIn this study, a convenient assay method has been developed based on labeled functional nucleic acids (H-DNA) and a competitive fluorescent lateral flow immunoassay (CF-LFI) for ampicillin (AMP) detection. Herein, we designed the tunable AMP probes for AMP detection based on the AMP aptamer, and the secondary DNA fragment. The probes can generate tunable signals on the test line (T line) and control line (C line) according to the concentration of AMP.
View Article and Find Full Text PDFHerein, we demonstrate the fabrication of innovative pH-activable carbon nanoparticles (CNPs) based on urea and citric acid by microwave-assisted green synthesis for application in cell imaging. These CNP-based nanoprobes offer significant advantages of pH responsiveness and excellent biocompatibility. The pH responsiveness ranges from 1.
View Article and Find Full Text PDFDespite the success in long-term storage of food and dietary products using antibiotics as supplements, enormous levels of their residues have remained as a significant health concern, leading to severe toxicity issues on consumption. Herein, we report an ultrasensitive and highly selective aptasensor based on carbon nanoparticles (CNPs) through a fluorescence-based aptamer-linked immunosorbent assay (FALIA) for rapid detection of kanamycin (KAA) residue. The fabricated CNP-aptasensor exhibited superior selectivity with exceptional photoluminescence properties.
View Article and Find Full Text PDFIn this work, with the drug oxytetracycline (OTC) released, cell cytotoxicity and antimicrobial studies of dual-responsive sodium alginate and -Isopropylacrylamide hydrogels (SA/pNIPAAm) with enclosed OTC were investigated. The molecular OTC release was explored with different acid-base conditions and temperature conditions. In order to characterize cell cytotoxicity and antimicrobial efficacy, time-dependent OTC release analysis of different acid-base conditions was performed in SA/pNIPAAm hydrogels.
View Article and Find Full Text PDFIn this work, we have developed a simple and rapid colorimetric assay for the detection of immunoglobulin E (IgE) using functional nucleic acids (FNAs) and a solid-phase competition enzyme-linked immunosorbent assay (ELISA). The FNAs including aptamer of recombinant IgE, G-quadruplex and its complementary fragments were immobilized on 96-well microplates to achieve recognition and detection of IgE in biological samples. The G-quadruplex DNAzyme catalyzed 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS)-hemin-HO system was used to improve the sensitivity of colorimetric assay.
View Article and Find Full Text PDFCarbon nanoparticles (CNPs) have been combined with aptamer, providing a broad application in small molecule. CNPs can be quenched by small molecules and are usually applied as luminescent probes because of their photophysical characteristics. In this work, we developed a competitive analysis for antibiotic residues detection based on carbon nanoparticles (CNPs) and oligonucleotide probes.
View Article and Find Full Text PDF