Acquired chemoresistance refers to tumor cells gradually losing their sensitivity to anticancer drugs during the course of treatment, resulting in tumor progression or recurrence. This phenomenon, which has deleterious outcomes for the patient, has long been observed in patients with glioblastoma receiving temozolomide (TMZ)-based radiochemotherapy. Currently, the mechanisms for acquired TMZ chemoresistance are not fully understood.
View Article and Find Full Text PDFOur previous research suggested that the P2X4 receptor (P2X4R) expression in microglia was involved in the activation of toll-like receptor-4 (TLR4) in the dorsal horn in the rat model of cancer induced bone pain (CIBP). In this study, we focused on whether TLR4- mitogen-activated protein kinases, p38 (p38 MAPK) contributes to P2X4R activation and brain-derived neurotrophic factor (BDNF) over-secretion in CIBP. In in vitro experiment, the results showed that BDNF expression evoked by ATP stimulation was dependent on TLR4-p38.
View Article and Find Full Text PDFThe AKT2 kinase (protein kinase Bβ) is overexpressed in high-grade gliomas. Upregulation of the AKT2 gene has been previously observed in glioblastoma patients suffering from chemotherapy failure and tumor progress. In this study, we aimed to evaluate the effect of AKT2 on viability and chemoresistance in the human glioblastoma cell line U251.
View Article and Find Full Text PDFAccumulating evidence suggests that chemokine monocyte chemoattractant protein-1 (MCP-1) is significantly involved in the activation of spinal microglia associated with pathological pain, at the same time that the phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) pathway localized in spinal microglia is involved in both neuropathic and inflammatory pain. However, whether there is a connection between MCP-1 and the PI3K/Akt pathway and in their underlying mechanisms in bone cancer pain (BCP) has not yet been elucidated. In the current study, we investigated the expression changes of p-Akt in microglia and OX-42 (microglia marker) after being stimulated with MCP-1 in vitro, as well as in a BCP model that was established by an intramedullary injection of mammary gland carcinoma cells(Walker 256 cells) into the tibia of rats.
View Article and Find Full Text PDFPrevious studies have suggested that the microglial P2X7 purinoceptor is involved in the release of tumor necrosis factor-α (TNFα) following activation of toll-like receptor-4 (TLR4), which is associated with nociceptive behavior. In addition, this progress is evoked by the activation of the P2X4 purinoceptor (P2X4R). Although P2X4R is also localized within spinal microglia in the dorsal horn, little is known about its role in cancer-induced bone pain (CIBP), which is in some ways unique.
View Article and Find Full Text PDFSterol regulatory element-binding protein-1a (SREBP1a) is a member of the SREBP family of transcription factors, which mainly controls homeostasis of lipids. SREBP1a can also activate the transcription of isocitrate dehydrogenase 1 (IDH1) by binding to its promoter region. IDH1 mutations, especially R132H mutation of IDH1, are a common feature of a major subset of human gliomas.
View Article and Find Full Text PDFBone cancer pain is difficult to treat and has a strong impact on the quality of life of patients. Few therapies have emerged because the molecular mechanisms underlying bone cancer pain are poorly understood. Recently, T-cell death-associated gene 8 (TDAG8) has been shown to participate in complete Freund's adjuvant-induced chronic inflammatory pain.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) released within the spinal cord induces phosphorylation of N-methyl-D-aspartate (NMDA) receptors on the spinal cord neurons. This process is necessary for maintaining pain hypersensitivity after nerve injury. However, little is known about the role of BDNF and NMDA receptors in cancer-induced bone pain (CIBP), whose features are unique.
View Article and Find Full Text PDFThe role of celastrol in the treatment of cancer has been an area of growing interest. To circumvent the issues of low solubility, poor bioavailability, and systemic toxicity of celastrol, we prepared liposomal celastrol using the thin-film dispersion method. We characterized particle size, encapsulation efficiency, and pharmacological parameters of liposomal celastrol.
View Article and Find Full Text PDFPrevious studies have suggested that the release of brain-derived neurotrophic factor (BDNF) from microglia in spinal cord is necessary for maintaining pain hypersensitivity after nerve injury. However, little is known about its role in cancer-induced bone pain (CIBP), which is in some ways unique. This study demonstrates a critical role of minocycline (a potent inhibitor of microglial activation)-modulated BDNF in the induction and maintenance of behavioral hypersensitivity in a rat model of CIBP.
View Article and Find Full Text PDFObjective: To investigate the role of brain-derived neurotrophic factor (BDNF) in pain facilitation and spinal mechanisms in the rat model of bone cancer pain.
Methods: The bone cancer pain model was developed by inoculated Walker 256 mammary gland carcinoma cells into the tibia medullary cavity. Sixty SD female rats were divided into 5 groups (n = 12 each) randomly; group I: control group (sham operation); group II: model group; group III: control group + anti-BDNF intrathecal (i.
Background: Previous studies have demonstrates that, after nerve injury, extracellular signal-regulated protein kinase (ERK) activation in the spinal cord-initially in neurons, then microglia, and finally astrocytes. In addition, phosphorylation of ERK (p-ERK) contributes to nociceptive responses following inflammation and/or nerve injury. However, the role of spinal cells and the ERK/MAPK pathway in cancer-induced bone pain (CIBP) remains poorly understood.
View Article and Find Full Text PDFGliomas are the most common human brain tumours and can be classified into four grades based on clinical and pathological criteria. A recent cancer genome-sequencing project revealed that more than 70% of low-grade gliomas bear mutations in one of two NAD(+)-dependent isocitrate dehydrogenase enzymes, namely, IDH1 and IDH2. Based on the findings that glioma-derived mutations in IDH1 can inhibit the catalytic activity of the enzyme, induce HIF-1α, and can produce 2-hydroxyglutarate, two research groups speculated that the IDH mutations may contribute to the promotion of tumorigenesis in gliomas.
View Article and Find Full Text PDFCD40 is expressed in many tumor cells, however, its role in tumor biology is yet to be demonstrated. In the present study, we investigated the role of CD40 in gliomas. In vivo, we evaluated CD40 expression in 95 glioma tissues and 10 non-tumorous brain tissues and investigated the relationship between histopathological parameters, vascular density, and vascular endothelial growth factor (VEGF) expressions.
View Article and Find Full Text PDFProurokinase (proUK) is a zymogenic plasminogen activator that at pharmacological doses is prone to nonspecific activation to urokinase. This has handicapped therapeutic exploitation of its fibrin-specific physiological properties. To attenuate this susceptibility without compromising specific activation of proUK on a fibrin clot, a Lys300-->His mutation (M5) was developed.
View Article and Find Full Text PDF