The extraction of Scutellaria baicalensis Georgi was investigated using the response surface methodology-genetic algorithm mathematical regression model, and the extraction variables were optimized to maximize the flavonoid yield. Furthermore, a simple and efficient ultrafiltration-liquid chromatography-mass spectrometry and molecular docking methods were developed for the rapid screening and identification of acetylcholinesterase inhibitors present in Scutellaria baicalensis Georgi. Subsequently, four major chemical constituents, namely baicalein, norwogonin, wogonin, and oroxylin A, were identified as potent acetylcholinesterase inhibitors.
View Article and Find Full Text PDFWe present a simple and efficient method based on ultrafiltration high-performance liquid chromatography coupled with a photodiode array detector and electrospray ionization mass spectrometry for the rapid screening and identification of ligands obtainable from the extract of Scutellaria baicalensis. Five major compounds (chrysin-6-C-arabinosyl-8-C-glucoside, chrysin-6-C-glucosyl-8-C-arabinoside, baicalin, oroxylin A-7-O-glucuronide, and wogonoside) were identified as potentially effective inhibitors of lipoxidase and superoxide dismutase. Subsequently, specific binding ligands were separated by high-speed countercurrent chromatography, using ethyl acetate/ethyl alcohol/water acetate (0.
View Article and Find Full Text PDFIntroduction: Medicago sativa contains flavonoids, saponins, coumarins, sterols, monoterpenes, and organic acids, with flavonoids being the main active constituents. Flavonoids naturally contain a 2-phenylchromone structure with antioxidant, free radical scavenging, cardiovascular, and trace estrogen-like effects.
Objective: Screening and isolation of neuraminidase, lipoxidase, and lactate dehydrogenase inhibitors from M.
A simple and efficient method based on ultrafiltration with liquid chromatography and mass spectrometry was used for the rapid screening and identification of ligands in the extracts of Stellera chamaejasme. The bound ligands, i.e.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs appear to reduce the risk of developing cancer. One mechanism through which nonsteroidal anti-inflammatory drugs act to prevent carcinogenesis is inhibition of the activity of the enzyme cyclooxygenase-2. The cyclooxygenase-2 inhibitors are widely used to reduce the risk of developing cancer.
View Article and Find Full Text PDF