Background: Magnetic resonance (MR) black-blood thrombus imaging (BTI) is an accurate diagnostic technique for detecting deep vein thrombosis (DVT) but to date there have been no studies comparing the diagnostic performance and consistency of this technique at different field strengths. In this study, we evaluated and compared the diagnostic performance of BTI for detecting DVT at 1.5 T and 3.
View Article and Find Full Text PDFThe aim of the study was to compare CE-MRV with DANTE-SPACE on a 1.5T MRI system for the diagnosis of DVT. The patients were diagnosed with deep venous thrombosis of the lower extremities based on swelling, pain, and superficial varicose veins of the lower extremities.
View Article and Find Full Text PDFBackground: The aim was to investigate the feasibility of a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BBTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and a variable flip angle turbo-spin-echo readout, for the diagnosis of acute deep vein thrombosis (DVT) at 1.5 T.
Methods: BBTI was conducted in 15 healthy subjects and 30 acute DVT patients.
Purpose: To evaluate the performance of an optimized ECG trigger diffusion weighted imaging (DWI) sequence in liver and its application in liver disease.
Materials And Methods: Eighteen healthy volunteers underwent intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) scan of the liver twice in 1.5T MR scanner with signed informed consent approved by local ethic committees.
Background: Deep vein thrombosis (DVT) is a common but elusive illness that can result in long-term disability or death. Accurate detection of thrombosis and assessment of its size and distribution are critical for treatment decision-making. In the present study, we sought to develop and evaluate a cardiovascular magnetic resonance (CMR) black-blood thrombus imaging (BTI) technique, based on delay alternating with nutation for tailored excitation black-blood preparation and variable flip angle turbo-spin-echo readout, for the diagnosis of non-acute DVT.
View Article and Find Full Text PDF