Publications by authors named "Jianjun Cheng"

Extensively hydrolyzed protein products not only provide sufficient nutrition but also effectively reduce the allergenicity of milk proteins. However, there was limited information about the sensitization of extensive hydrolysate of milk protein concentrate (EMPHs). In this study, the mechanism by which EMPHs reduce sensitization was studied by constructing an milk protein concentrate (MPC) sensitization evaluation animal model.

View Article and Find Full Text PDF

Heat-moisture treatment (HMT) could improve the structure and physicochemical characteristics of rice starch, the structural changes of amylose and amylopectin needed to be further investigated. Hence, the starch, amylose and amylopectin were modified by HMT with different moisture contents (MC). As MC increased, starch granules became irregular, amylose appeared molten while amylopectin was less damaged.

View Article and Find Full Text PDF

Spider silk, known for its exceptional tensile strength, extensibility, and toughness, continues to inspire advancements in polymer and materials science. Despite extensive research, synthesizing materials that encompass all these properties remains a significant challenge. This study addresses this challenge by developing high molecular-weight multiblock synthetic copolypeptides that mimic the hierarchical structure and mechanical properties of spider silk.

View Article and Find Full Text PDF

Protein hydrolysates have attracted much attention for their high biological activity and are a crucial product form for the utilization of foxtail millet bran by-products. In this study, changes in the structure, functionality, activity and peptide profile of foxtail millet bran protein hydrolysates (FMBPHs) at different ultrasound powers (0 - 600 W) were investigated. The results showed that ultrasound promoted the transformation of α-helix and β-sheet to random coils and β-turn, and the exposure of hydrophobic groups and sulfhydryl groups in FMBPHs.

View Article and Find Full Text PDF

Ion transport is essential to energy storage, cellular signalling and desalination. Polymers have been explored for decades as solid-state electrolytes by either adding salt to polar polymers or tethering ions to the backbone to create less flammable and more robust systems. New design paradigms are needed to advance the performance of solid polymer electrolytes beyond conventional systems.

View Article and Find Full Text PDF

Aim: An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD).

Methods: The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses.

View Article and Find Full Text PDF

Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D receptor (DRD1)-legobody complexes, accompanied by a β-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus β-arrestin coupling.

View Article and Find Full Text PDF

Geopolymers, as a novel cementitious material, exhibit typical brittle failure characteristics under stress. To mitigate this brittleness, fibers can be incorporated to enhance toughness. This study investigates the effects of varying polypropylene fiber (PPF) content and fiber length on the flowability, mechanical properties, and flexural toughness of coal gangue-based geopolymers.

View Article and Find Full Text PDF

Inhibiting the adhesion and growth of marine microorganisms through photocatalysis is a potentially efficient and environmentally friendly antifouling strategy. However, the undesired "shading effect" caused by resin coatings and microbial deposition reduces the utilization of the catalysts and leads to a failure in the antifouling active substance on the coating surface. Here, we successfully developed a composite coating (DPC-) combining g-CN nanosheet (g-C-NS) photocatalysts with degradable green poly-Schiff base resins, which integrates the dual functions of enhanced dynamic self-renewal and photocatalytic antibacterial activities towards long-term anti-biofouling.

View Article and Find Full Text PDF

Postoperative tumor recurrence and wound infection remain significant clinical challenges in surgery, often requiring adjuvant therapies. The combination treatment of photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be effective in cancer treatment and wound infection. However, the hyperthermia during PTT increases the risk of normal tissue damage, severely impeding its application.

View Article and Find Full Text PDF
Article Synopsis
  • * This study uses natural language processing to pinpoint six key emerging areas in nanoscale materials for medical use: self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials.
  • * The focus is on how these nanoscale materials enhance properties for human tissue interaction and enable complex functions such as programmable drug delivery.
View Article and Find Full Text PDF

A novel curcumin (CUR) delivery system was developed using soybean whey protein (SWP)-based emulsions, enhanced by pH-adjustment and gum arabic (GA) modification. Modulating electrostatic interactions between SWP and GA at oil/water interface, pH provides favorable charging conditions for stable distribution between droplets. GA facilitated the SWP form a stable interfacial layer that significantly enhanced the emulsifying properties and CUR encapsulation efficiency of the system at pH 6.

View Article and Find Full Text PDF

Porous sandwich-like structures with surface roughness possess the capacity to sustain droplets, diminish the area of contact between solids and liquids, and augment heat conductivity, and thus delay ice formation when the temperature drops below the freezing point. The prevalence of this combination of surface roughness and a hollow sandwich structure has been observed in several organisms, such as lotus leaves, which have developed these features as a result of environmental adaptation. This study introduces a new design for a surface consisting of a micro-nano conical array and a foam structure with a gradient of pores.

View Article and Find Full Text PDF

Gambogic acid (GA) as a naturally derived chemotherapeutic agent is of increasing interest for antitumor therapy. However, current research mainly focuses on improving the pharmacological properties to overcome the shortcomings in clinical applications or as a synergistic anticancer agent in combination with chemotherapy and chemophototherapy. Yet, the material properties of GA (, self-assembly) are often neglected.

View Article and Find Full Text PDF

Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and zeta potential of -35.

View Article and Find Full Text PDF

Effective treatments for complex central nervous system (CNS) disorders require drugs with polypharmacology and multifunctionality, yet designing such drugs remains a challenge. Here, we present a flexible scaffold-based cheminformatics approach (FSCA) for the rational design of polypharmacological drugs. FSCA involves fitting a flexible scaffold to different receptors using different binding poses, as exemplified by IHCH-7179, which adopted a "bending-down" binding pose at 5-HTR to act as an antagonist and a "stretching-up" binding pose at 5-HTR to function as an agonist.

View Article and Find Full Text PDF

Extrusion is typically employed to prepare resistant starch (RS). However, the process is complicated. In this study, the effects of twin-screw extrusion on the crystallinity, thermal properties, and functional properties of starch formed in different extrusion zones were investigated.

View Article and Find Full Text PDF

In this paper, the electronic nose (E-nose) and headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) were used to analyze the volatiles of rice bran kvass (RBK) with the reference of Qiulin kvass (QLK). Meanwhile, the flavor amino acids of RBK before and after fermentation were determined. The results showed that the kinds of kvass remained consistent in terms of the overall category of volatiles while there were differences in content between them (p < 0.

View Article and Find Full Text PDF

The composition of milk lipids varies across different ethnic sources. The lipidome profiles of Chinese Han human milk (HHM) and Chinese Korean human milk (KHM) were investigated in this study. A total of 741 lipids were identified in HHM and KHM.

View Article and Find Full Text PDF

Immunotherapy utilizing anti-PD-L1 blockade has achieved dramatic success in clinical breast cancer management but is often hampered by the limited immune response. Increasing evidence shows that immunogenic cell death (ICD) recently arises as a promising strategy for enlarging tumor immunogenicity and eliciting systemic anti-tumor immunity effectively. However, developing simple but versatile, highly efficient but low-toxic, biosafe, and clinically available transformed ICD inducers remains a huge demand and is highly desirable.

View Article and Find Full Text PDF

The use of privileged scaffolds in medicinal chemistry is an effective way to accelerate the drug discovery process, especially at the hit/lead optimization stage. 2-Phenylcyclopropylmethylamine (PCPMA) is a less commonly used chemical scaffold in medicinal chemistry, but many PCPMA-containing compounds exert therapeutic effects for various diseases, in particular central nervous system (CNS) diseases such as depression, schizophrenia, sleep disorder, and Parkinson's disease. The backbone of the PCPMA scaffold enables a unique structure of an amino group linked to a benzene ring through an alkyl linker, making it a useful template for the design of bioactive compounds especially for CNS drug targets including aminergic GPCRs and transporters.

View Article and Find Full Text PDF

saponins (PNSs) have been used as a nutritional supplement for many years, but their bitter taste limits their application in food formulations. The effects of PNS (groups B, C, and D contained 0.8, 1.

View Article and Find Full Text PDF

Intracellular pathogens affect a significant portion of world population and cause millions of deaths each year. They can invade host cells and survive inside them and are extremely resistant to immune systems and antibiotics. Current treatments have limitations, and therefore, new effective therapies are needed to combat this ongoing health challenge.

View Article and Find Full Text PDF