Anthrax lethal toxin (LT) is known to induce NLRP1B inflammasome activation and pyroptotic cell death in macrophages from certain mouse strains in its metalloprotease activity-dependent manner, but the underlying mechanism is unknown. Here, we establish a simple but robust cell system bearing dual-fluorescence reporters for LT-induced ASC specks formation and pyroptotic lysis. A genome-wide siRNA screen and a CRISPR-Cas9 knockout screen were applied to this system for identifying genes involved in LT-induced inflammasome activation.
View Article and Find Full Text PDFGram-negative bacterial lipopolysaccharide (LPS)-induced Toll-like receptor 4 (TLR4) mediated pro-inflammatory signaling plays a key role in immunoprotection against infectious challenges and boosts adaptive immunity, whereas the activation of the cytosolic LPS receptor caspase-4/11 leads to cell death by pyroptosis and is deeply implicated in the development of sepsis. Despite tremendous advances in the understanding of the LPS-TLR4 interaction, predictably regulated TLR4 activation has not yet been achieved. The structural basis for the induction of caspase-4/11 protease activity by LPS is currently unknown.
View Article and Find Full Text PDFGasdermin-D (also known as GSDMD), the newly identified executioner of pyroptotic cell death, is cleaved by activated caspase-1 downstream of canonical inflammasome activation or caspase-4, 5, and 11 upon their ligation and activation by cytosolic LPS. Upon a single cleavage between the two domains in Gasdermin-D, the N-terminal domain binds to membrane lipids and lyses cells by forming pores of an inner diameter of 10-14 nm within the membrane. The inter-domain cleavage of Gasdermin-D is a reliable marker for the activation of inflammatory caspases and cell pyroptosis.
View Article and Find Full Text PDFPyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific.
View Article and Find Full Text PDFInflammatory caspases cleave the gasdermin D (GSDMD) protein to trigger pyroptosis, a lytic form of cell death that is crucial for immune defences and diseases. GSDMD contains a functionally important gasdermin-N domain that is shared in the gasdermin family. The functional mechanism of action of gasdermin proteins is unknown.
View Article and Find Full Text PDFBiochemical studies suggest that the NAIP family of NLR proteins are cytosolic innate receptors that directly recognize bacterial ligands and trigger NLRC4 inflammasome activation. In this study, we generated Naip5(-/-), Naip1(-/-), and Naip2(-/-) mice and showed that bone marrow macrophages derived from these knockout mice are specifically deficient in detecting bacterial flagellin, the type III secretion system needle, and the rod protein, respectively. Naip1(-/-), Naip2(-/-), and Naip5(-/-) mice also resist lethal inflammasome activation by the corresponding ligand.
View Article and Find Full Text PDFDendritic cells (DCs) use pattern recognition receptors to detect microorganisms and activate protective immunity. These cells and receptors are thought to operate in an all-or-nothing manner, existing in an immunologically active or inactive state. Here, we report that encounters with microbial products and self-encoded oxidized phospholipids (oxPAPC) induce an enhanced DC activation state, which we call "hyperactive.
View Article and Find Full Text PDFInflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown.
View Article and Find Full Text PDFThe murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2013
Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages.
View Article and Find Full Text PDFInflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood.
View Article and Find Full Text PDF