Publications by authors named "Jianjie Gao"

1,2-Dichloroethane (1,2-DCA), a widely utilized chemical intermediate and organic solvent in industry, frequently enters the environment due to accidental leaks and mishandling during application processes. Thus, the in-situ remediation of contaminated sites has become increasingly urgent. However, traditional remediation methods are inefficient and costly, while bioremediation presents a green, efficient, and non-secondary polluting alternative.

View Article and Find Full Text PDF

Background: The demand for melatonin is increasing due to its health-promoting bioactivities such as antioxidant and sleep benefits. Although melatonin is present in various organisms, its low content and high extraction cost make it unsustainable. Biosynthesis is a promising alternative method for melatonin production.

View Article and Find Full Text PDF

2-nitroaniline (2-NA) is an environmental pollutant and has been extensively used as intermediates in organic synthesis. The presence of 2-NA in the environment is not only harmful for aquatic life but also mutagenic for human beings. In this study, we constructed transgenic rice expressing an Old Yellow Enzyme gene, ScOYE3, from Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Pervasive environmental contamination due to the uncontrolled dispersal of 2,4-dinitrotoluene (2,4-DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy-intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4-DNT degradation module is designed, assembled, and validated in rice plants.

View Article and Find Full Text PDF

2,4-Dinitrotoluene (2,4-DNT) as a common industrial waste has been massively discharged into the environment with industrial wastewater. Due to its refractory degradation, high toxicity, and bioaccumulation, 2,4-DNT pollution has become increasingly serious. Compared with the currently available physical and chemical methods, in situ bioremediation is considered as an economical and environmentally friendly approach to remove toxic compounds from contaminated environment.

View Article and Find Full Text PDF
Article Synopsis
  • The long-used organic herbicide 2,4-D has led to significant environmental pollution and ecological issues, prompting the need for effective remediation methods.
  • Researchers engineered a strain of Escherichia coli with a complete degradation pathway for 2,4-D, allowing it to effectively break down the herbicide within hours and use it as its sole carbon source.
  • Genetic analyses and imaging techniques confirmed that the engineered bacteria not only degraded 2,4-D efficiently but also showed reduced damage compared to non-engineered strains, proving synthetic biology as a promising approach for environmental bioremediation.
View Article and Find Full Text PDF

Background: Terrequinone A is a bis-indolylquinone natural product with antitumor activity. Due to its unique asymmetric quinone core structure and multiple functional groups, biosynthesis is more efficient and environmentally friendly than traditional chemical synthesis. Currently, most bis-indolylquinones are obtained by direct extraction from fungi or by chemical synthesis.

View Article and Find Full Text PDF

Currently, feed enzymes are primarily obtained through fermentation of fungi, bacteria, and other microorganisms. Although the manufacturing technology for feed enzymes has evolved rapidly, the activities of these enzymes decline during the granulating process and the cost of application has increased over time. An alternative approach is the use of genetically modified plants containing complex feed enzymes for direct utilization in animal feedstuff.

View Article and Find Full Text PDF

4-nitrobenzaldehyde (4-NBA) is a widely used chemical intermediate for industrial application and an important photodegradation product of chloramphenicol. This compound represents a substantial threat to human health and ecosystem due to its genotoxic and mutagenic effect. In this study, the 4-NBA detoxification by transgenic rice overexpressing a bacterial nitroreductase gene, ElNFS1, from Enterobacter ludwigii were investigated.

View Article and Find Full Text PDF

Nitrobenzene is widely present in industrial wastewater and soil. Biodegradation has become an ideal method to remediate organic pollutants due to its low cost, high efficiency, and absence of secondary pollution. In the present study, 10 exogenous genes that can completely degrade nitrobenzene were introduced into Escherichia coli, and their successful expression in the strain was verified by fluorescence quantitative polymerase chain reaction and proteomic analysis.

View Article and Find Full Text PDF

Background: Production of vitamin C has been traditionally based on the Reichstein process and the two-step process. However, the two processes share a common disadvantage: vitamin C cannot be directly synthesized from D-glucose. Therefore, significant effort has been made to develop a one-step vitamin C fermentation process.

View Article and Find Full Text PDF

Carotenoids, indispensable isoprenoid phytonutrients, are synthesized in plastids and are known to be deficient in rice endosperm. Many studies, involving transgenic manipulations of carotenoid biosynthetic genes, have been performed to obtain carotenoid-enriched rice grains. Nuclear-encoded GOLDEN2-LIKE (GLK) transcription factors play important roles in the regulation of plastid and thylakoid grana development.

View Article and Find Full Text PDF

As a kind of refractory organic pollutant, 4-fluorophenol (4-FP) can be degraded by only a few microorganisms with low efficiency because of the great electron-withdrawing ability of fluorine atoms. So it is necessary to artificially construct engineered strain to improve the degradation efficiency and meet the requirements of pollutant degradation. In this study, four genes (fpdA2, fpdB, fpdC, and fpdD) for 4-FP degradation from Arthrobacter sp.

View Article and Find Full Text PDF

Selenium (Se) is a micronutrient essential for human and animal health. However, Se is toxic at high levels because the nonspecific substitution of cysteine by selenocysteine could lead to protein malfunction. In an attempt to prevent nonspecific selenocysteine incorporation into proteins, we simultaneously overexpressed the gene encoding selenocysteine lyase from Homo sapiens (HsSL), which specifically catalyzes the decomposition of selenocysteine into elemental Se and alanine, and the gene encoding selenocysteine methyltransferase from Astragalus bisulcatus (AbSMT), which methylates selenocysteine into methylselenocysteine in rice.

View Article and Find Full Text PDF

Organophosphate compounds are widely used in pesticides to control weeds, crop diseases, and insect pests. Unfortunately, these synthetic compounds are hazardous and toxic to all types of living organisms. In the present work, was bioengineered to achieve methyl parathion (MP) degradation via the introduction of six synthetic genes, namely, , , , , , and , to obtain a new transformant, BL-MP.

View Article and Find Full Text PDF

Industrial thiocyanate (SCN) waste streams from gold mining and coal coking have caused serious environmental pollution worldwide. Phytoremediation is an efficient technology in treating hazardous wastes from the environment. However, the phytoremediation efficiency of thiocyanate is very low due to the fact that plants lack thiocyanate degradation enzymes.

View Article and Find Full Text PDF

p-Nitrophenol (PNP) is an important environmental pollutant and can causes significant environmental and health risks. Compared with the traditional methods, biodegradation is a useful one to completely remove the harmful pollutants from the environment. Here, an engineered strain was first constructed by introducing PNP biodegradation pathway via the hydroquinone (HQ) pathway into Escherichia coli.

View Article and Find Full Text PDF

Chlorinated aromatic compounds are a serious environmental concern because of their widespread occurrence throughout the environment. Although several microorganisms have evolved to gain the ability to degrade chlorinated aromatic compounds and use them as carbon sources, they still cannot meet the diverse needs of pollution remediation. In this study, the degradation pathways for 3-chlorocatechol (3CC) and 4-chlorocatechol (4CC) were successfully reconstructed by the optimization, synthesis, and assembly of functional genes from different strains.

View Article and Find Full Text PDF

2,4,6-trinitrotoluene (TNT) and cobalt (Co) contaminants have posed a severe environmental problem in many countries. Phytoremediation is an environmentally friendly technology for the remediation of these contaminants. However, the toxicity of TNT and cobalt limit the efficacy of phytoremediation application.

View Article and Find Full Text PDF

The high toxicity of persistent pollutants limits the phytoremediation of pollutants-contaminated soil. In this study, heterologous expressing Halorhodospira halophila single-stranded DNA binding protein gene (HhSSB) improves tolerance to 2,4,6-trinitrotoluene (TNT), 2,4,6-trichlorophenol (2,4,6-TCP), and thiocyanate (SCN) in A. thaliana and tall fescue (Festuca arundinacea).

View Article and Find Full Text PDF

Betanin has been widely used as an additive for many centuries, and its use has increased because of its market application as an additive, high free radical scavenging activity, and safety, health-promoting properties. The main source of betanin is red beet, but many factors notably affect the yield of betanin from red beets. Betanin is not produced in cereal grains.

View Article and Find Full Text PDF

5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) overexpression, attempting to provide excess EPSPS to combine with glyphosate, is one way to improve glyphosate resistance of plants. The EPSPS in extremophiles which is selected by nature to withstand the evolutionary pressure may possess some potential-specific biological functions. In this study, we reported the cloning, expression and enzymatic characterization of a novel Class II EPSPS AroA from Thermotoga maritima MSB8.

View Article and Find Full Text PDF

Plants are frequently exposed to variable environmental stresses that adversely affect plant growth, development and agricultural production. In this study, a trypanothione synthetase gene from Trypanosoma cruzi, TcTryS, was chemically synthesized and its roles in tolerance to multiple abiotic stresses were functionally characterized by generating transgenic rice overexpressing TcTryS. Overexpression of TcTryS in rice endows transgenic plants with hypersensitivity to ABA, hyposensitivity to NaCl- and mannitol-induced osmotic stress at the seed germination stage.

View Article and Find Full Text PDF