Introduction: Interspecific introgression between Gossypium hirsutum and G. barbadense allows breeding cotton with outstanding fiber length (FL). However, the dynamic gene regulatory network of FL-related genes has not been characterized, and the functional mechanism through which the hub gene GhTUB5 mediates fiber elongation has yet to be determined.
View Article and Find Full Text PDFCotton is an important cash crop for the textile industry. However, the understanding of natural genetic variation of fiber elongation in relation to miRNA is lacking. A miRNA gene (miR477b) was found to co-localize with a previously mapped fiber length (FL) quantitative trait locus (QTL).
View Article and Find Full Text PDFIntegrated QTL mapping and WGCNA condense the potential gene regulatory network involved in oil accumulation. A glycosyl hydrolases gene (GhHSD1) for oil biosynthesis was confirmed in Arabidopsis, which will provide useful knowledge to understand the functional mechanism of oil biosynthesis in cotton. Cotton is an economical source of edible oil for the food industry.
View Article and Find Full Text PDFCotton is the most economically important natural fiber crop grown in more than sixty-five countries of the world. Fiber length is the main factor affecting fiber quality, but the existing main varieties are short in length and cannot suit the higher demands of the textile industry. It is necessary to discover functional genes that enable fiber length improvement in cotton through molecular breeding.
View Article and Find Full Text PDFVerticillium wilt is a soil-borne fungal disease that severely affects cotton fiber yield and quality. Herein, a cotton Trihelix family gene, GhGT-3b_A04, was strongly induced by the fungal pathogen Verticillium dahliae. Overexpression of the gene in Arabidopsis thaliana enhanced the plant's resistance to Verticillium wilt but inhibited the growth of rosette leaves.
View Article and Find Full Text PDFArenobufagin, one of the bufadienolides isolated from traditional Chinese medicine Chan'su, exhibits potent antitumor activity. However, serious toxicity and small therapeutic window limits its drug development. In the present study, to our knowledge, novel 3,11-bispeptide ester arenobufagin derivatives have been firstly designed and synthesized on the base of our previous discovery of active 3-monopeptide ester derivative.
View Article and Find Full Text PDFCotton fiber is one of the most important natural raw materials in the world textile industry. Improving fiber yield and quality has always been the main goal. MicroRNAs, as typical small noncoding RNAs, could affect fiber length during different stages of fiber development.
View Article and Find Full Text PDFInterspecific breeding in cotton takes advantage of genetic recombination among desirable genes from different parental lines. However, the expression new alleles (ENAs) from crossovers within genic regions and their significance in fibre length (FL) improvement are currently not understood. Here, we generated resequencing genomes of 191 interspecific backcross inbred lines derived from CRI36 (Gossypium hirsutum) × Hai7124 (Gossypium barbadense) and 277 dynamic fibre transcriptomes to identify the ENAs and extremely expressed genes (eGenes) potentially influencing FL, and uncovered the dynamic regulatory network of fibre elongation.
View Article and Find Full Text PDFCotton is not only the most important fiber crop but also the fifth most important oilseed crop in the world because of its oil-rich seeds as a byproduct of fiber production. By comparative transcriptome analysis between two germplasms with diverse oil accumulation, we reveal pieces of the gene expression network involved in the process of oil synthesis in cottonseeds. Approximately, 197.
View Article and Find Full Text PDFSeed size and shape are key agronomic traits affecting seedcotton yield and seed quality in cotton ( spp.). However, the genetic mechanisms that regulate the seed physical traits in cotton are largely unknown.
View Article and Find Full Text PDFA backcross inbred line population of cotton was evaluated for Fusarium wilt race 4 resistance at different days after inoculation (DAI). Both constitutively expressed and developmentally regulated QTLs were detected. The soil-borne fungus Fusarium oxysporum f.
View Article and Find Full Text PDFCotton is the most important fiber crop and provides indispensable natural fibers for the textile industry. Micronaire (MIC) is determined by fiber fineness and maturity and is an important component of fiber quality. L.
View Article and Find Full Text PDFActive natural productscan be valuable lead compounds and numerous drugs derived from natural products have successfully entered the clinic. Arenobufagin, one of the important active components of toad venom, indicates significant antitumor activities with limited preclinical development for its strong cardiotoxicity. Ten 3-monopeptide substituted arenobufagin derivatives have been designed and synthesized.
View Article and Find Full Text PDFThe MIR160 family in Gossypium hirsutum and G. barbadense was characterized, and miR160a_A05 was found to increase cotton-fiber length by downregulating its target gene (ARF17) and several GH3 genes. Cotton fiber is the most important raw material for the textile industry.
View Article and Find Full Text PDFCotton ( spp.) is the most important natural fiber crop in the world. The R2R3-MYB gene family is a large gene family involved in many plant functions including cotton fiber development.
View Article and Find Full Text PDFCottonseed oil is one of the most important renewable resources for edible oil and biodiesel. To detect QTLs associated with cottonseed oil content (OC) and identify candidate genes that regulate oil biosynthesis, a panel of upland cotton germplasm lines was selected among those previously used to perform GWASs in China. In the present study, 13 QTLs associated with 53 common SNPs on 13 chromosomes were identified in multiple environments based on 15,369 polymorphic SNPs using the Cotton63 KSNP array.
View Article and Find Full Text PDFWe constructed the first high-quality and high-density genetic linkage map for an interspecific BIL population in cotton by specific-locus amplified fragment sequencing for QTL mapping. A novel gene GhPIN3 for plant height was identified in cotton. Ideal plant height (PH) is important for improving lint yield and mechanized harvesting in cotton.
View Article and Find Full Text PDFCotton is an economically important crop grown for natural fiber and seed oil production. Cottonseed oil ranks third after soybean oil and colza oil in terms of edible oilseed tonnage worldwide. Glycerol-3-phosphate acyltransferase () genes encode enzymes involved in triacylglycerol biosynthesis in plants.
View Article and Find Full Text PDFBackground: In upland cotton (Gossypium hirsutum L.), genotypes with the same mature fiber length (FL) might possess different genes and exhibit differential expression of genes related to fiber elongation at different fiber developmental stages. However, there is a lack of information on the genetic variation influencing fiber length and its quantitative trait loci (QTLs) during the fiber elongation stage.
View Article and Find Full Text PDFCotton ( spp.) is the most important natural fiber crop and the source of cottonseed oil, a basic by-product after ginning. and its orthologs in several other crop species have been previously used to increase triacylglycerols in seeds and vegetative tissues.
View Article and Find Full Text PDFBackground: Lysophosphatidic acid acyltransferase (LPAAT) encoded by a multigene family is a rate-limiting enzyme in the Kennedy pathway in higher plants. Cotton is the most important natural fiber crop and one of the most important oilseed crops. However, little is known on genes coding for LPAATs involved in oil biosynthesis with regard to its genome organization, diversity, expression, natural genetic variation, and association with fiber development and oil content in cotton.
View Article and Find Full Text PDFLysophosphatidic acid acyltransferase (LPAAT) which converts lysophosphatidic acid into phosphatidic acid is a key enzyme in biosynthesis pathway of lipid in plants. In this study, we identified 17 members of the LPAAT gene family from genomic data of G. raimondii-D5 and G.
View Article and Find Full Text PDF