Innovation (Camb)
September 2023
The search of quantum spin liquid (QSL), an exotic magnetic state with strongly fluctuating and highly entangled spins down to zero temperature, is a main theme in current condensed matter physics. However, there is no smoking gun evidence for deconfined spinons in any QSL candidate so far. The disorders and competing exchange interactions may prevent the formation of an ideal QSL state on frustrated spin lattices.
View Article and Find Full Text PDFStarting from Landau's kinetic equation, we show that an electronic liquid in = 2, 3 spatial dimensions depicted by a Landau-type effective theory will become incompressible on condition that the Landau parameters satisfy either (i) [Formula: see text] or (ii) [Formula: see text]. Condition (i) is the Pomeranchuk instability in the current channel and suggests a quantum spin liquid (QSL) state with a spinon Fermi surface; while condition (ii) means that the strong repulsion in the charge channel leads to a conventional charge and thermal insulator. In the collisionless regime (ωτ ≫ 1) and the hydrodynamic regime (ωτ ≪ 1), the zero and first sound modes have been studied and classified by symmetries, including the longitudinal and transverse modes in = 2, 3 and the higher angular momentum modes in = 3.
View Article and Find Full Text PDFWe study Kitaev model in one-dimension with open boundary condition by using exact analytic methods for non-interacting system at zero chemical potential as well as in the symmetric case of Δ = t, and by using density-matrix-renormalization-group method for interacting system with nearest neighbor repulsion interaction. We suggest and examine an edge correlation function of Majorana fermions to characterize the long range order in the topological superconducting states and study the phase diagram of the interating Kitaev chain.
View Article and Find Full Text PDFThe Kitaev chain model with a nearest neighbor interaction U is solved exactly at the symmetry point Δ=t and chemical potential μ=0 in an open boundary condition. By applying two Jordan-Wigner transformations and a spin rotation, such a symmetric interacting model is mapped onto a noninteracting fermion model, which can be diagonalized exactly. The solutions include a topologically nontrivial phase at |U|
There is an anomalous broad hump in the normal state resistivity in hole-type 1111 phase FeAs-based superconductors and its origin is an open issue. We study the effect of Zn doping on this anomaly in order to determine whether it is associated with the residual structural/antiferromagnetic (AFM) phase transition as in the parent compounds. A series of Zn doped Pr₀.
View Article and Find Full Text PDF