Publications by authors named "Jianing Hui"

There is an increasing recognition that microplastics can act as a vector for micropollutants when co-occurring in the environment and that pollutant-loaded microplastics can become integral to food-webs. To evaluate whether fluoxetine-loaded microplastics can act as a vector for fluoxetine to enter the food chain, a toxicity assay with Daphnia magna neonates was performed. This study evaluated the fluoxetine availability when adsorbed onto virgin or aged polypropylene, polyamide, and polyvinyl chloride (PVC).

View Article and Find Full Text PDF

Plastic pollution is an increasing environmental concern. Pollutants such as microplastics (< 5 mm) and pharmaceuticals often co-exist in the aquatic environment. The current study aimed to elucidate the interaction of pharmaceuticals with microplastics and ascertain how the process of photo-oxidation of microplastics affected the adsorption of the pharmaceuticals.

View Article and Find Full Text PDF

Microplastic research has gained attention due to the increased detection of microplastics (<5 mm size) in the aquatic environment. Most laboratory-based research of microplastics is performed using microparticles from specific suppliers with either superficial or no characterisation performed to confirm the physico-chemical information detailed by the supplier. The current study has selected 21 published adsorption studies to evaluate how the microplastics were characterised by the authors prior experimentation.

View Article and Find Full Text PDF

Cyanobacteria and their toxic secondary metabolites present challenges for water treatment globally. In this study we have assessed TiO immobilized onto recycled foamed glass beads by a facile calcination method, combined in treatment units with 365 nm UV-LEDs. The treatment system was deployed in mesocosms within a eutrophic Brazilian drinking water reservoir.

View Article and Find Full Text PDF

Cyanobacteria and their toxins are a threat to drinking water safety as increasingly cyanobacterial blooms (mass occurrences) occur in lakes and reservoirs all over the world. Photocatalytic removal of cyanotoxins by solar light active catalysts is a promising way to purify water at relatively low cost compared to modifying existing infrastructure. We have established a facile and low-cost method to obtain TiO and g-CN coated floating photocatalysts using recycled glass beads.

View Article and Find Full Text PDF

Plastics are utilised globally but are of environmental concern due to their persistence. The global presence of microplastics (particles <5 mm in all dimensions) in freshwater environments is increasingly reported, as has the presence of cyanobacterial toxins, including the microcystins. We elucidated the potential role of microplastics as a vector for eight microcystin analogues.

View Article and Find Full Text PDF

To date, the high cost of supplying UV irradiation has prevented the widespread application of UV photolysis and titanium dioxide based photocatalysis in removing undesirable organics in the water treatment sector. To overcome this problem, the use of UV-LEDs (365 nm) for photolysis and heterogeneous photocatalysis applying TiO coated glass beads under UV-LED illumination (365 nm) in a pilot scale reactor for the elimination of Microcystis aeruginosa PCC7813 and four microcystin analogues (MC-LR, -LY, -LW, -LF) with a view to deployment in drinking water reservoirs was investigated. UV-A (365 nm) photolysis was shown to be more effective than the UV/TiO photocatalytic system for the removal of Microcystis aeruginosa cells and microcystins.

View Article and Find Full Text PDF

Cyanobacteria and their toxic secondary metabolites are a challenge in water treatment due to increased biomass and dissolved metabolites in the raw water. Retrofitting existing water treatment infrastructure is prohibitively expensive or unfeasible, hence 'in-reservoir' treatment options are being explored. In the current study, a treatment system was able to photocatalytically inhibit the growth of Microcystis aeruginosa and remove released microcystins by photocatalysis using titanium dioxide coated, porous foamed glass beads and UV-LEDs (365 nm).

View Article and Find Full Text PDF

Cation defects in La and Cr co-doped SrTiO have been specifically studied for elucidating correlations between defect concentration, electronic properties, structural properties and photocatalytic activity for H production. A moderate cation deficiency can promote the photocatalytic activity by ca. 3 fold, which can be mainly linked to the enhancement of the charge carrier mobility.

View Article and Find Full Text PDF