2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices.
View Article and Find Full Text PDFDion-Jacobson perovskite (DJP) films suffer from the high structural disorder and non-compact morphology, leading to inefficient and unstable solar cells (SCs). Here, how the alkyl chains of alkylammonium pseudohalide additives including methylammonium thiocyanate (MASCN) and ethylammonium thiocyanate (EASCN), and propylammonium thiocyanate (PASCN), impact the microstructures, optoelectronic properties and the performance of the solar cells is investigated. These additives substantially improve the structural order and the morphology of the DJP films, yielding more efficient and stable solar cells than the control device.
View Article and Find Full Text PDFAs a holy grail in electrochemistry, both high-power and high-energy electrochemical energy storage system (EES) has always been a pursued dream. To simultaneously achieve the "both-high" EES, a rational design of structure and composition for storage materials with characteristics of battery-type and capacitor-type storage is crucial. Herein, fluorine-nitrogen co-implanted carbon tubes (FNCT) have been designed, in which plentiful active sites and expanded interlayer space have been created benefiting from the heteroatom engineering and the fluorine-nitrogen synergistic effect, thus the above two-type storage mechanism can get an optimal balance in the FNCT.
View Article and Find Full Text PDFThe urgent demand for high energy and safety storage devices is pushing the development of lithium metal batteries. However, unstable solid electrolyte interface (SEI) formation and uncontrollable lithium dendrite growth are still huge challenges for the practical use of lithium metal batteries. Herein, a composite polymer electrolyte (CPE) endowed with designated ion channels is fabricated by constructing nanoscale Uio66-NH layer, which has uniformly distributed pore structure to regulate reversible Li plating/stripping in lithium metal batteries.
View Article and Find Full Text PDFThe steel-plastic compound geogrid has been widely used as a new reinforcement material in geotechnical engineering and other fields. Therefore, it is essential to fully understand the mechanical properties of steel-plastic compound geogrid-reinforced belts to utilize steel-plastic compound geogrids efficiently. In this study, tensile mechanical tests of steel wire, polyethylene geogrid belt, and steel-plastic compound geogrid-reinforced belt were conducted with respect to the tensile mechanical properties of steel-plastic compound geogrid-reinforced belts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2021
ACS Appl Mater Interfaces
December 2019
The quasi-solid-state electrolytes (QSSEs) with an inorganic skeleton, a solid-liquid composite material combining their respective merits, exhibit high ionic conductivity and mechanical strength. However, most quasi-solid electrolytes prepared by immobilizing ionic liquid (IL) or organic liquid electrolyte in inorganic scaffold generally have poor interface compatibility and low lithium ion migration number, which limits its application. Herein, we design and prepare a ZIF-8-based QSSE (ZIF-8 QSSE) in which the ZIF-8 has a special cage structure and interaction with the guest electrolyte to form a composite electrolyte with good ionic conductivity about 1.
View Article and Find Full Text PDF