Publications by authors named "Jianhuan Qi"

Article Synopsis
  • A study quantified structural variants (SVs) in 562 rhesus macaques, using advanced sequencing methods to identify significant genetic differences.
  • It found that certain inversions in the genome are under strong selective pressure, suggesting they play crucial roles in regulating gene functions.
  • Among these, 75 inversions were identified as human-specific, influencing brain development and cognitive abilities, highlighting how genetic changes shape human uniqueness.
View Article and Find Full Text PDF

Otic neurons, also known as spiral ganglion neurons (SGNs) in mammalian cochlea, transmit electrical signals from sensory hair cells to cochlear nuclei of the auditory system. SGNs are sensitive to toxic insults, vulnerable to get irreversible damaged and hardly regenerate after damage, causing persistent sensorineural hearing loss. Yet, to get authentic SGNs for research or therapeutic purpose remains challenging.

View Article and Find Full Text PDF

Newly originated de novo genes have been linked to the formation and function of the human brain. However, how a specific gene originates from ancestral noncoding DNAs and becomes involved in the preexisting network for functional outcomes remains elusive. Here, a human-specific de novo gene, SP0535, is identified that is preferentially expressed in the ventricular zone of the human fetal brain and plays an important role in cortical development and function.

View Article and Find Full Text PDF

Human de novo genes can originate from neutral long non-coding RNA (lncRNA) loci and are evolutionarily significant in general, yet how and why this all-or-nothing transition to functionality happens remains unclear. Here, in 74 human/hominoid-specific de novo genes, we identified distinctive U1 elements and RNA splice-related sequences accounting for RNA nuclear export, differentiating mRNAs from lncRNAs, and driving the origin of de novo genes from lncRNA loci. The polymorphic sites facilitating the lncRNA-mRNA conversion through regulating nuclear export are selectively constrained, maintaining a boundary that differentiates mRNAs from lncRNAs.

View Article and Find Full Text PDF

Astrocyte scar formation after spinal cord injury (SCI) efficiently limits the accurate damage but physically restricts the following axon regeneration. Lately, fine tuning scar formation is becoming a novel strategy to develop SCI treatment, yet how to leverage these opposite effects remains challenging. Here, utilizing an improved drug administration approach, we show that in a mouse model of spinal cord injury, continual deletion of microglia, especially upon scar formation, by pexidartinib decreases the amount of microglia-derived collagen I and reforms the astrocyte scar.

View Article and Find Full Text PDF