Publications by authors named "Jianhua Ruan"

In geminiviruses belonging to the genus Begomovirus, coat protein (CP) expression depends on viral AL2 protein, which derepresses and activates the CP promoter through sequence elements that lie within the viral intergenic region (IR). However, AL2 does not exhibit sequence-specific DNA binding activity but is instead directed to responsive promoters through interactions with host factors, most likely transcriptional activators and/or repressors. In this study, we describe a repressive plant-specific transcription factor, Arabidopsis thaliana TCP24 (AtTCP24), that interacts with AL2 and recognizes a class II TCP binding site in the CP promoter (GTGGTCCC).

View Article and Find Full Text PDF

Transcription factors are an integral component of the cellular machinery responsible for regulating many biological processes, and they recognize distinct DNA sequence patterns as well as internal/external signals to mediate target gene expression. The functional roles of an individual transcription factor can be traced back to the functions of its target genes. While such functional associations can be inferred through the use of binding evidence from high-throughput sequencing technologies available today, including chromatin immunoprecipitation sequencing, such experiments can be resource-consuming.

View Article and Find Full Text PDF

Accurate prediction of breast cancer metastasis in the early stages of cancer diagnosis is crucial to reduce cancer-related deaths. With the availability of gene expression datasets, many machine-learning models have been proposed to predict breast cancer metastasis using thousands of genes simultaneously. However, the prediction accuracy of the models using gene expression often suffers from the diverse molecular characteristics across different datasets.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a lethal disease with few known targeted therapies. Here, we show that decreased ATRX expression is associated with more aggressive tumor cell phenotypes, including increased growth, migration, invasion, and metastasis. These phenotypic changes correspond with activation of NF-κB signaling, extracellular matrix remodeling, increased integrin αvβ3 expression, and ETS family transcription factor binding.

View Article and Find Full Text PDF

The epigenome delineates lineage-specific transcriptional programs and restricts cell plasticity to prevent non-physiological cell fate transitions. Although cell diversification fosters tumor evolution and therapy resistance, upstream mechanisms that regulate the stability and plasticity of the cancer epigenome remain elusive. Here we show that 2-hydroxyglutarate (2HG) not only suppresses DNA repair but also mediates the high-plasticity chromatin landscape.

View Article and Find Full Text PDF

Interpretability of machine learning (ML) models represents the extent to which a model's decision-making process can be understood by model developers and/or end users. Transcriptomics-based cancer prognosis models, for example, while achieving good accuracy, are usually hard to interpret, due to the high-dimensional feature space and the complexity of models. As interpretability is critical for the transparency and fairness of ML models, several algorithms have been proposed to improve the interpretability of arbitrary classifiers.

View Article and Find Full Text PDF

The advancement in single-cell RNA sequencing technologies allow us to obtain transcriptome at single cell resolution. However, the original spatial context of cells, a crucial knowledge for understanding cellular and tissue-level functions, is often lost during sequencing. To address this issue, the DREAM Single Cell Transcriptomics Challenge launched a community-wide effort to seek computational solutions for spatial mapping of single cells in tissues using single-cell RNAseq (scRNA-seq) data and a reference atlas obtained from in situ hybridization data.

View Article and Find Full Text PDF

Background: The abundance of molecular profiling of breast cancer tissues entailed active research on molecular marker-based early diagnosis of metastasis. Recently there is a surging interest in combining gene expression with gene networks such as protein-protein interaction (PPI) network, gene co-expression (CE) network and pathway information to identify robust and accurate biomarkers for metastasis prediction, reflecting the common belief that cancer is a systems biology disease. However, controversy exists in the literature regarding whether network markers are indeed better features than genes alone for predicting as well as understanding metastasis.

View Article and Find Full Text PDF

Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage.

View Article and Find Full Text PDF

Geminiviruses are a significant group of emergent plant DNA viruses causing devastating diseases in food crops worldwide, including the Southern United States, Central America and the Caribbean. Crop failure due to geminivirus-related disease can be as high as 100%. Improved global transportation has enhanced the spread of geminiviruses and their vectors, supporting the emergence of new, more virulent recombinant strains.

View Article and Find Full Text PDF

Acquired therapy resistance is a major problem for anticancer treatment, yet the underlying molecular mechanisms remain unclear. Using an established breast cancer cellular model, we show that endocrine resistance is associated with enhanced phenotypic plasticity, indicated by a general downregulation of luminal/epithelial differentiation markers and upregulation of basal/mesenchymal invasive markers. Consistently, similar gene expression changes are found in clinical breast tumours and patient-derived xenograft samples that are resistant to endocrine therapies.

View Article and Find Full Text PDF

Single-cell RNA sequencing is a powerful technology for obtaining transcriptomes at single-cell resolutions. However, it suffers from dropout events (i.e.

View Article and Find Full Text PDF

Background: Discovering a highly accurate and robust gene signature for the prediction of breast cancer metastasis from gene expression profiling of primary tumors is one of the most challenging tasks to reduce the number of deaths in women. Due to the limited success of gene-based features in achieving satisfactory prediction accuracy, many methodologies have been proposed in recent years to develop network-based features by integrating network information with gene expression. However, evaluation results are inconsistent to confirm the effectiveness of network-based features, because of many confounding factors involved in classification model learning process, such as data normalization, dimension reduction, and feature selection.

View Article and Find Full Text PDF

Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported.

View Article and Find Full Text PDF

The sixth International Conference on Intelligent Biology and Medicine (ICIBM) took place in Los Angeles, California, USA on June 10-12, 2018. This conference featured eleven regular scientific sessions, four tutorials, one poster session, four keynote talks, and four eminent scholar talks. The scientific program covered a wide range of topics from bench to bedside, including 3D Genome Organization, reconstruction of large scale evolution of genomes and gene functions, artificial intelligence in biological and biomedical fields, and precision medicine.

View Article and Find Full Text PDF

The 2018 International Conference on Intelligent Biology and Medicine (ICIBM 2018) was held on June 10-12, 2018, in Los Angeles, California, USA. The conference consisted of a total of eleven scientific sessions, four tutorials, one poster session, four keynote talks and four eminent scholar talks, which covered a wild range of aspects of bioinformatics, medical informatics, systems biology and intelligent computing. Here, we summarize nine research articles selected for publishing in BMC Bioinformatics.

View Article and Find Full Text PDF

Between June 10-12, 2018, the International Conference on Intelligent Biology and Medicine (ICIBM 2018) was held in Los Angeles, California, USA. The conference included 11 scientific sessions, four tutorials, one poster session, four keynote talks and four eminent scholar talks that covered a wide range of topics in 3D genome structure analysis and visualization, next generation sequencing analysis, computational drug discovery, medical informatics, cancer genomics and systems biology. Systems biology has been a main theme in ICIBM 2018, with exciting advances presented in many areas of systems biology, covering various different data types such as gene regulation, circular RNAs expression, single-cell RNA-Seq, inter-chromosomal interactions, metabolomics, proteomics and phosphoproteomics.

View Article and Find Full Text PDF

Background: Natural killer (NK) cells are effective at killing tumors in a non-MHC restricted manner and are emerging targets for cancer therapy but their importance in bladder cancer (BC) is poorly defined. NK cells are commonly subdivided into populations based on relative surface expression of CD56. Two major subsets are CD56 and CD56 NK cells.

View Article and Find Full Text PDF

Emerging evidence indicates that adipose stromal cells (ASC) are recruited to enhance cancer development. In this study, we examined the role these adipocyte progenitors play relating to intercellular communication in obesity-associated endometrial cancer. This is particularly relevant given that gap junctions have been implicated in tumor suppression.

View Article and Find Full Text PDF

Chromatin conformation capture with high-throughput sequencing (Hi-C) is a powerful technique to detect genome-wide chromatin interactions. In this paper, we introduce two novel approaches to detect differentially interacting genomic regions between two Hi-C experiments using a network model. To make input data from multiple experiments comparable, we propose a normalization strategy guided by network topological properties.

View Article and Find Full Text PDF

The inflammatory and metabolic derangements of obesity in pregnant women generate an adverse intrauterine environment, increase pregnancy complications and adverse fetal outcomes and program the fetus for obesity and metabolic syndrome in later life. We hypothesized that epigenetic modifications in placenta including altered DNA methylation/hydroxymethylation may mediate these effects. Term placental villous tissue was collected following cesarean section from lean (prepregnancy BMI<25) or obese (BMI>30) women.

View Article and Find Full Text PDF

In this editorial, we first summarize the 2016 International Conference on Intelligent Biology and Medicine (ICIBM 2016) that was held on December 8-10, 2016 in Houston, Texas, USA, and then briefly introduce the ten research articles included in this supplement issue. ICIBM 2016 included four workshops or tutorials, four keynote lectures, four conference invited talks, eight concurrent scientific sessions and a poster session for 53 accepted abstracts, covering current topics in bioinformatics, systems biology, intelligent computing, and biomedical informatics. Through our call for papers, a total of 77 original manuscripts were submitted to ICIBM 2016.

View Article and Find Full Text PDF

Background: position weight matrix (PWM) and sequence logo are the most widely used representations of transcription factor binding site (TFBS) in biological sequences. Sequence logo - a graphical representation of PWM, has been widely used in scientific publications and reports, due to its easiness of human perception, rich information, and simple format. Different from sequence logo, PWM works great as a precise and compact digitalized form, which can be easily used by a variety of motif analysis software.

View Article and Find Full Text PDF

Between December 8-10, 2016, the International Conference on Intelligent Biology and Medicine (ICIBM 2016) was held in Houston, Texas, USA. The conference included eight scientific sessions, four tutorials, one poster session, four highlighted talks and four keynotes that covered topics in 3D genome structure analysis and visualization, next generation sequencing analysis, computational drug discovery, medical informatics, cancer genomics and systems biology. Systems biology has been a main theme in ICIBM 2016, with exciting advances were presented in many areas of systems biology.

View Article and Find Full Text PDF

The 2016 International Conference on Intelligent Biology and Medicine (ICIBM 2016) was held on December 8-10, 2016 in Houston, Texas, USA. ICIBM included eight scientific sessions, four tutorials, one poster session, four highlighted talks and four keynotes that covered topics on 3D genomics structural analysis, next generation sequencing (NGS) analysis, computational drug discovery, medical informatics, cancer genomics, and systems biology. Here, we present a summary of the nine research articles selected from ICIBM 2016 program for publishing in BMC Bioinformatics.

View Article and Find Full Text PDF