Publications by authors named "Jianhua Qin"

Alteration or abnormal activation of RTKs have been recurrently observed and recognized as an important driving factor in the progression of many human cancers. Ferroptosis, an iron-dependent form of regulated necrosis triggered by the accumulation of lethal lipid peroxides on cell membranes, has been implicated in various tumor types. Here we reported that oncogenic RTKs/RAS/RAF/c-Myc axis promotes cancer cells to ferroptosis.

View Article and Find Full Text PDF

The poultry red mite Dermanyssus gallinae, a prevalent ectoparasite in egg-laying poultry, severely compromises bird health and impedes the poultry industry's development. However, the escalating drug resistance due to sustained reliance on chemical acaricides highlights the urgent need for new mite management strategies. Therefore, plant essential oils (EOs), which exhibit natural acaricidal properties and environmental compatibility, represent promising candidates for developing eco-friendly acaricides.

View Article and Find Full Text PDF

Maternal exposure to nanoparticles during gestation poses potential risks to fetal development. The placenta, serving as a vital interface for maternal-fetal interaction, plays a pivotal role in shielding the fetus from direct nanoparticle exposure. However, the impact of nanoparticles on placental function is still poorly understood, primarily due to the absence of proper human placental models.

View Article and Find Full Text PDF

Droplets, tiny liquid compartments, are increasingly emerging in the biomedical and biomanufacturing fields due to their unique properties to serve as templates or independent reaction units. Currently, the straightforward and efficient generation of various functional droplets in a biofriendly manner remains challenging. Herein, a novel microfluidic-assisted pneumatic strategy is described for the customizable and high-throughput production of monodispersed droplets, and the droplet size can be precisely controlled via a simplified gas pressure regulation module.

View Article and Find Full Text PDF

Organs-on-chips are microphysiological systems that allow to replicate the key functions of human organs and accelerate the innovation in life sciences including disease modeling, drug development, and precision medicine. However, due to the lack of standards in their definition, structural design, cell source, model construction, and functional validation, a wide range of translational application of organs-on-chips remains a challenging. "Organs-on-chips: Intestine" is the first group standard on human intestine-on-a-chip in China, jointly agreed and released by the experts from the Chinese Society of Biotechnology on 29th April 2024.

View Article and Find Full Text PDF

Background: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type of kidney cancer, characterized by high heterogeneity and complexity. Recent studies have identified mitochondrial defects and autophagy as key players in the development of ccRCC. This study aims to delve into the changes in mitophagic activity within ccRCC and its impact on the tumor microenvironment, revealing its role in tumor cell metabolism, development, and survival strategies.

View Article and Find Full Text PDF

Varicellovirus bovinealpha 1 (BoAHV-1) is a significant pathogen responsible for respiratory disease in cattle, capable of inducing lung damage independently or co-infection with bacteria. The widespread spread of BoAHV-1 in cattle herds has caused substantial economic losses to the cattle industry. The pathogenic mechanisms of BoAHV-1 are often relevant to robust inflammatory responses, increased oxidative burden, and the initiation of apoptosis.

View Article and Find Full Text PDF

Microgels are advanced scaffolds for tissue engineering due to their proper biodegradability, good biocompatibility, and high specific surface area for effective oxygen and nutrient transfer. However, most of the current monodispersed microgel fabrication systems rely heavily on various precision pumps, which highly increase the cost and complexity of their downstream application. In this work, we developed a simple and facile system for the controllable generation of uniform alginate microgels by integrating a gas-shearing strategy into a glass microfluidic device.

View Article and Find Full Text PDF

Dermanyssus gallinae is a major hematophagous ectoparasite in layer hens. Although the acaricide β-cypermethrin has been used to control mites worldwide, D. gallinae has developed resistance to this compound.

View Article and Find Full Text PDF

Organ-on-a-chip technology has shown great potential in disease modeling and drug evaluation. However, traditional organ-on-a-chip devices are mostly pump-dependent with low throughput, which makes it difficult to leverage their advantages. In this study, we have developed a generic, pump-free organ-on-a-chip platform consisting of a 32-unit chip and an adjustable rocker, facilitating high-throughput dynamic cell culture with straightforward operation.

View Article and Find Full Text PDF

Organoids have emerged as major technological breakthroughs and novel organ models that have revolutionized biomedical research by recapitulating the key structural and functional complexities of their in vivo counterparts. The combination of organoid systems and microfluidic technologies has opened new frontiers in organoid engineering and offers great opportunities to address the current challenges of existing organoid systems and broaden their biomedical applications. In this review, the key features of the existing organoids, including their origins, development, design principles, and limitations, are described.

View Article and Find Full Text PDF

The investigation of the converging shock-induced Richtmyer-Meshkov instability, which arises from the interaction of converging shocks with the interface between materials of differing densities in cylindrical capsules, is of significant importance in the field of inertial confinement fusion (ICF). The use of converging shocks, which exhibit higher efficiency than planar shocks in the development of the RMI due to the Bell-Plesset effects, is particularly relevant to energy production in the ICF. Moreover, external magnetic fields are often utilized to mitigate the development of the RMI.

View Article and Find Full Text PDF

Objective: To identify the clinical features and prognostic factors for sublingual gland carcinoma.

Methods: This was a case-control study. Patients with surgically treated sublingual gland carcinoma were retrospectively included in the Surveillance, Epidemiology and End Results database and divided into adenoid cystic carcinoma (ACC) and non-ACC groups.

View Article and Find Full Text PDF

Varicellovirus bovinealpha 1 (BoAHV-1) is one of the crucial pathogens of bovine respiratory diseases, and its pathogenic mechanism involves oxidative stress, inflammation response, and apoptosis. Glycyrrhizin (GLY) possesses powerful antiviral, antioxidant, anti-inflammatory, and anti-apoptotic bioactivities. However, the anti-BoAHV-1 activity of GLY and its role in BoAHV-1-induced oxidative stress, inflammation, and apoptosis remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • White matter tracts (WMs) are key pathways for glioblastoma multiforme (GBM) invasion, but research into this process is limited by inadequate models.
  • Various in vitro models, such as nerve fiber cultures, brain slice cultures, organoids, and microfluidic chips, have been developed to better replicate the brain's environment and study GBM invasion.
  • These advanced models allow for a deeper understanding of GBM's behavior in relation to WMs, perineural invasion, and how other solid tumors metastasize in the brain.
View Article and Find Full Text PDF

Acupuncture points have a positive effect on the auxiliary prevention and treatment of diseases, so medical devices such as acupuncture robots often need to combine acupuncture points to improve the treatment effect when working, however, intelligent acupoint selection technology is not yet mature, the automatic rapid and accurate positioning of acupoints is still challenging. Therefore, this paper proposes a method of back acupoint location and an evaluation index of acupoint location. First, we propose an improved Keypoint RCNN network for the preliminary location of back acupoints and introduce a channel and spatial attention mechanism module (CBAM) to improve the performance of the model.

View Article and Find Full Text PDF

The design of chimeric antigen receptors (CAR) significantly enhances the antitumor efficacy of T cells. Although some CAR-T products have been approved by FDA in treating hematological tumors, adoptive immune therapy still faces many difficulties and challenges in the treatment of solid tumors. In this study, we reported a new strategy to treat solid tumors using a natural killer-like T (NKT) cell line which showed strong cytotoxicity to lyse 15 cancer cell lines, safe to normal cells and had low or no Graft-versus-host activity.

View Article and Find Full Text PDF

Hydrogel microfibers, which are characterized by flexible mechanical properties, a uniform spatial distribution, large surface areas, and excellent biocompatibility, hold great potential for various biomedical applications. However, the fabrication of heterogeneous hydrogel microfibers with high cell-loading capacity and the ability to carry multiple components via an environmentally friendly method remains challenging. In this study, we developed a novel pneumatic pump-assisted all-aqueous microfluidic system that enables the one-step fabrication of all-aqueous droplet-filled hydrogel microfibers with unique morphologies and adjustable configurations.

View Article and Find Full Text PDF

During the last decade, organs-on-chips or organoids microphysiological analysis platforms (MAP) have garnered attention in the practical applications of disease models, drug discovery, and developmental biology. Research on pregnant women has firm limitations due to ethical issues; thus, remodelling human pregnancy in vitro is highly beneficial for treatment modality development via disease remodelling or drug monitoring. This review highlights current efforts in bioengineering devices to reproduce human pregnancy and emphasises the significant convergence of biology, engineering, and maternal-foetal medicine.

View Article and Find Full Text PDF

The RNA helicase DExD/H-box (DDX) family of proteins plays a central role in host cellular RNA metabolism, including mRNA regulation, microRNA biogenesis, and ribosomal processing. DDX5, also known as p68, promotes viral replication and tumorigenesis. However, there have been no studies on the regulation of the intestinal microbiota by DDX family proteins.

View Article and Find Full Text PDF

In some patients, COVID-19 can trigger neurological symptoms with unclear pathogenesis. Here we describe a microphysiological system integrating alveolus and blood-brain barrier (BBB) tissue chips that recapitulates neuropathogenesis associated with infection by SARS-CoV-2. Direct exposure of the BBB chip to SARS-CoV-2 caused mild changes to the BBB, and infusion of medium from the infected alveolus chip led to more severe injuries on the BBB chip, including endothelial dysfunction, pericyte detachment and neuroinflammation.

View Article and Find Full Text PDF

Organoids are in model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility.

View Article and Find Full Text PDF

To clarify the impact of different displacement media on the enhanced oil recovery of continental shale and realize the efficient and reasonable development of shale reservoirs, this paper takes the continental shale of the Lucaogou Formation in the Jimusar Sag in the Junggar Basin (China, Xinjiang) as the research object and uses real cores to build the fracture/matrix dual-medium model. Computerized tomography (CT) scanning is used to visually compare and analyze the influence of fracture/matrix dual-medium and single-matrix medium seepage systems on oil production characteristics and clarify the difference between air and CO in enhancing the oil recovery of continental shale reservoirs. Through a comprehensive analysis of the production parameters, the whole oil displacement process can be divided into three stages: the oil-rich and gas-poor stage, oil and gas coproduction stage, and gas-rich and oil-poor stage.

View Article and Find Full Text PDF