Publications by authors named "Jianhai Zhou"

We describe a three-component reaction of malononitrile, benzaldehyde and ,-dimethylaniline using aluminium doped CdSeS/CdZnSeS(Al)/ZnS quantum dots (QDs) as visible light catalysts to synthesize α-aminobutyrilitriles at room temperature and under mild conditions. The reactions exhibit high functional group tolerance, and the well dispersed quantum dot catalysts are highly efficient with a turnover number (TON) greater than 1.1 × 10 and can be recycled at least three times without significant loss of catalytic activity.

View Article and Find Full Text PDF

Phonon-assisted up-conversion photoluminescence can boost energy of an emission photon to be higher than that of the excitation photon by absorbing vibration energy (or phonons) of the emitter. Here, up-conversion photoluminescence power-conversion efficiency (power ratio between the emission and excitation photons) for CdSe/CdS core/shell quantum dots is observed to be beyond unity. Instead of commonly known defect-assisted up-conversion photoluminescence for colloidal quantum dots, temperature-dependent measurements and single-dot spectroscopy reveal the up-conversion photoluminescence and conventional down-conversion photoluminescence share the same electron-phonon coupled electronic states.

View Article and Find Full Text PDF

ZnO quantum dots and CuFeO nanoparticles were synthesized by chemical precipitation. The composite was created by the solvothermal method. A new molecularly imprinted fluorescence sensor () with unique optical properties and specific MB recognition was successfully generated.

View Article and Find Full Text PDF

By taking advantage of well-defined spectroscopic signatures of high-quality CdSe/CdS core/shell QDs, the effects of oxygen on photoluminescence (PL) of QDs were studied systematically and quantitatively at both single-dot and ensemble (on substrate and in solution) levels, which reveals a unified yet simple picture. With a sufficient amount of oxygen in the system during photoexcitation, the core/shell QDs in all forms would be deionized timely from the photogenerated and inefficient trion state back to the efficient single-exciton state, with superoxide radicals as the reduction product of oxygen. Under a given excitation power, rates of both spontaneous deionization and photodeionization channels increased by increasing the oxygen pressure, but photoionization of the QDs was barely affected by the oxygen pressure.

View Article and Find Full Text PDF

Auger recombination is the main non-radiative decay pathway for multi-carrier states of colloidal quantum dots, which affects performance of most of their optical and optoelectronic applications. Outstanding single-exciton properties of CdSe/CdS core/shell quantum dots enable us to simultaneously study the two basic types of Auger recombination channels-negative trion and positive trion channels. Though Auger rates of positive trion are regarded to be much faster than that of negative trion for II-VI quantum dots in literature, our experiments find the two rates can be inverted for certain core/shell geometries.

View Article and Find Full Text PDF

This work explored possibilities to obtain colloidal quantum dots (QDs) with ideal photoluminescence (PL) properties, i.e., monoexponential PL decay dynamics, unity PL quantum yield, ensemble PL spectrum identical to that at the single-dot level, single-dot PL nonblinking, and antibleaching.

View Article and Find Full Text PDF

Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton.

View Article and Find Full Text PDF

CdSe magic-size clusters with close-shell surface and fixed molecular formula are well-known in the size range between ∼1 and 3 nm. By applying high concentration of cadmium alkanoates as ligands, a conventional synthetic system for CdSe nanocrystals was tuned to discriminate completion from initiation of atomic flat facets. This resulted in ∼4-13 nm CdSe nanocrystals with hexahedral shape terminated with low-index facets, namely three (100), one (110), and two (111) facets.

View Article and Find Full Text PDF

BC (bacterial cellulose) exhibits quite distinctive properties than plant cellulose. The outstanding properties make BC a promising material for preparation of artificial blood vessel. By taking advantage of the high oxygen permeability of PDMS (polydimethylsiloxane) as a tubular template material, a series of BC tubes with a length of 100 mm, a thickness of 1mm and an outer diameter of 4 or 6mm were biosynthesized with the help of Gluconacetobacter xylinum.

View Article and Find Full Text PDF

In the present work, we report on an experimental study of flexible nanocomposite film for electrochemical detection of hydrogen peroxide (H2O2) based on bacterial cellulose (BC) and multi-walled carbon nanotubes (MWCNTs) in combination with microperoxidase-11 (MP-11). MWCNTs are used to functionalize BC and provide a flexible conductive film. On the other hand, BC can improve MWCNTs׳ biocompatibility.

View Article and Find Full Text PDF

A porous triazine and carbazole bifunctionalized task-specific polymer has been synthesized via a facile Friedel-Crafts reaction. The resultant porous framework exhibits excellent CO2 uptake (18.0 wt%, 273 K and 1 bar) and good adsorption selectivity for CO2 over N2.

View Article and Find Full Text PDF

A fully atomistic simulation study is reported to provide mechanistic insight into the superior performance experimentally observed for a polymer membrane (Carta et al., Science, 2013, 339, 303-307). The membrane namely PIM-EA-TB is produced by a shape-persistent ladder polymer of intrinsic microporosity (PIM) with rigid bridged bicyclic ethanoanthracene (EA) and Tröger's base (TB).

View Article and Find Full Text PDF

Bacterial cellulose (BC) is useful in the biomedical field because of its unique structure and properties. The high nano-porosity of BC allows other materials to be incorporated and form reinforced composites. Here we describe the preparation and characterization of novel BC/hyaluronan (HA) nanocomposites with a 3-D network structure.

View Article and Find Full Text PDF

Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor.

View Article and Find Full Text PDF