Publications by authors named "Jianhai Jiang"

CD133 is widely used as a marker to isolate cancer stem cells (CSCs). However, the structural ambiguity of N-glycan of CD133 limits its application in the isolation of CSCs. Here, we present a protocol to sort CSCs from tumor samples by combining CD133 with α-1,2-high-mannose type glycan chains.

View Article and Find Full Text PDF

CD133 is widely used as a marker to isolate tumor-initiating cells in many types of cancers. The structure of N-glycan on CD133 is altered during the differentiation of tumor-initiating cells. However, the relationship between CD133 N-glycosylation and stem cell characteristics remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Targeting the niche components around glioblastoma stem cells (GSCs) can improve treatment strategies, but the interactions between GSCs and their surrounding environment are not well understood.
  • The study finds that CD133, a marker on GSCs, interacts with Collagen 1 (COL1) from cancer-associated fibroblasts, which plays a critical role in GSC behavior.
  • This interaction activates the Akt signaling pathway, promoting self-renewal and tumor growth of GSCs, while the presence of COL1 correlates with more aggressive glioma features.
View Article and Find Full Text PDF

Purpose: Sialic acid-bound immunoglobulin-like lectin 15 (Siglec15) has emerged as a novel therapeutic target in tumor immunotherapy. This study is designed to investigate the function and mechanism of Siglec15 in thyroid carcinoma (THCA).

Materials And Methods: The information on patients with THCA from TGCA and GEO database were used to analyze the expression of Siglec15 in THCA.

View Article and Find Full Text PDF

The monocyte adhesion to endothelial cells is an early step in chronic inflammation. Interferon-γ (IFN-γ) is regarded as a master regulator of inflammation development. However, the significance and mechanisms of IFN-γ in the monocyte adhesion to endothelial cells remains largely unknown.

View Article and Find Full Text PDF

The quiescent/slow-cycling state preserves the self-renewal capacity of cancer stem cells (CSCs) and leads to the therapy resistance of CSCs. The mechanisms maintaining CSCs quiescence remain largely unknown. Here, it is demonstrated that lower expression of MAN1A1 in glioma stem cell (GSC) resulted in the formation of high-mannose type N-glycan on CD133.

View Article and Find Full Text PDF

Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has been identified as a novel potential target for cancer immunotherapy. Here, we explored the role of Siglec-15 in human hepatoma cells. In this study, we found that the expression of Siglec-15 is substantially upregulated in liver cancer tissues in comparison with the nontumor tissues.

View Article and Find Full Text PDF

The tumor-initiating cell (TIC) marker CD133 promotes TIC self-renewal and tumorigenesis through the tyrosine phosphorylation of its c-terminal domain. Therefore, finding compounds that target the phosphorylation of CD133 will provide an effective method for inhibiting TICs characteristics. Here, through small molecule microarray screening, compound LDN193189 was found to bind to the c-terminus of CD133 and influenced its tyrosine phosphorylation.

View Article and Find Full Text PDF

Radiotherapy (RT) is a major treatment method for non-small-cell lung cancer (NSCLC), and development of new treatment modality is now critical to amplify the negative effects of RT on tumors. In this study, we demonstrated a nanoparticle-loaded block copolymer micellar system for cancer hyperthermia treatment (HT) that can be used for synergistic therapy under alternating magnetic field (AMF) and radiation field. Block copolymer micelles (polyethylene glycol--polycaprolactone, or PEG-PCL) containing hyaluronic acid (HA) and Mn-Zn ferrite magnetic nanoparticles (MZF) were fabricated via a two-step preparation.

View Article and Find Full Text PDF

Background & Aims: The microenvironment regulates hepatoma stem cell behavior. However, the contributions of lymphatic endothelial cells to the hepatoma stem cell niche remain largely unknown; we aimed to analyze this contribution and elucidate the mechanisms behind it.

Methods: Associations between lymphatic endothelial cells and CD133 hepatoma stem cells were analyzed by immunofluorescence and adhesion assays; with the effects of their association on IL-17A expression examined using western blot, quantitative reverse transcription PCR and luciferase reporter assay.

View Article and Find Full Text PDF

Abnormal alteration of N-glycosylation structure contributes to glioma progression. N-acetylglucosaminyltransferase I (MGAT1) plays an essential role in the conversion of processed high-mannose cores into complex or hybrid N-linked oligosaccharide structures. The function of MGAT1 in glioma development remains largely unknown.

View Article and Find Full Text PDF

CD133 is a widely used cell surface marker of cancer stem cells that plays an important role in tumor initiation and metastasis. Increasing evidence shows that CD133 is secreted to the extracellular space. However, the underlying mechanisms of CD133 secretion remain largely unknown.

View Article and Find Full Text PDF

O-GlcNAcylation catalysed by O-GlcNAc transferase (OGT) is a reversible post-translational modification. O-GlcNAcylation participates in transcription, epigenetic regulation, and intracellular signalling. Dysregulation of O-GlcNAcylation in response to high glucose or OGT expression has been implicated in metabolic diseases and cancer.

View Article and Find Full Text PDF

CD133, a widely known marker of cancer stem cells, was recently found in extracellular vesicles. However, the mechanisms underlying CD133 translocation to the extracellular space remain largely unknown. Here we report that CD133 is monoubiquitinated.

View Article and Find Full Text PDF

Malignant glioblastoma multiforme is one of the most aggressive human cancers, with very low survival rates. Recent studies have reported that glioma stem-like cells transdifferentiate into endothelial cells, indicating a new mechanism for tumor angiogenesis and potentially providing new therapeutic options for glioblastoma treatment. Glioma malignancy is strongly associated with altered expression of -linked oligosaccharide structures on the cell surface.

View Article and Find Full Text PDF

CD133, a widely known cancer stem cell marker, has been proved to promote tumor metastasis. However, the mechanism by which CD133 regulates metastasis remains largely unknown. Here, we report that CD133 knockdown inhibits cancer cell migration, and CD133 overexpression promotes cell migration.

View Article and Find Full Text PDF

Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay.

View Article and Find Full Text PDF

The membrane glycoprotein CD133 is a popular marker for cancer stem cells and contributes to cancer initiation and invasion in a number of tumor types. CD133 promotes tumorigenesis partly through an interaction between its phosphorylated Y828 residue and the PI3K regulatory subunit p85, and the interaction with β-catenin. Although CD133 glycosylation is supposed to be associated with its function, the contribution of N-glycosylation to its functions remains unclear.

View Article and Find Full Text PDF

The biological significance of a known normal and cancer stem cell marker CD133 remains elusive. We now demonstrate that the phosphorylation of tyrosine-828 residue in CD133 C-terminal cytoplasmic domain mediates direct interaction between CD133 and phosphoinositide 3-kinase (PI3K) 85 kDa regulatory subunit (p85), resulting in preferential activation of PI3K/protein kinase B (Akt) pathway in glioma stem cell (GSC) relative to matched nonstem cell. CD133 knockdown potently inhibits the activity of PI3K/Akt pathway with an accompanying reduction in the self-renewal and tumorigenicity of GSC.

View Article and Find Full Text PDF

The present study aimed to identify microRNA (miRNA) expression profiles associated with multidrug resistance (MDR) in gastric carcinoma. A 5‑fluorouracil (5‑Fu)‑induced MDR gastric cancer cell line was selected and miRNA expression profiling of the cell line was conducted following exposure to 5‑Fu. The miRNA expression profiles between the parental and resistant gastric cancer cells were analyzed by Human miRNA OneArray® v3 and the results were confirmed by quantitative real‑time RT‑PCR.

View Article and Find Full Text PDF

Objective: To investigate whether hyperglycemia affect the expression of glycosyltransferases and Enzyme-catalyzed glycosylation in the retina of diabetic rat.

Method: It was an experimental study. RT-PCR was used to analyze the mRNA level of six glycosyltransferases in the retina of streptozocin diabetic rats; Lectin blot assay with RCA-I was performed to investigate the level of Galβ 1→4GlcNAc or N-glycans on total retinal glycoproteins.

View Article and Find Full Text PDF

One of the most prominent transformation-associated changes in the sugar chains of glycoproteins is an increase in the large N-glycans of cell surface glycoprotein. beta1,4-galactosyltransferase V (beta1,4GalT V) could effectively galactosylate the GlcNAcbeta1-->6 branch which is a marker of glioma. The expression of beta1,4GalT V is increased in the process of glioma development.

View Article and Find Full Text PDF

Unlabelled: One of the serious sequelae of chronic hepatitis B virus (HBV) infection is hepatocellular carcinoma (HCC). Among all the proteins encoded by the HBV genome, hepatitis B virus X protein (HBx) is highly associated with the development of HCC. Although Notch1 signaling has been found to exert a tumor-suppressive function during HCC development, the mechanism of interaction between HBx expression and Notch1 signaling needs to be explored.

View Article and Find Full Text PDF

CD133 is widely used as a marker for the isolation and characterization of normal and cancer stem cells. The dynamic alternation of CD133 glycosylation contributes to the isolation of normal and cancer stem cells, and is supposed to be associated with cell differentiation. Although CD133 has been identified as a N-glycosylated protein, the specific glycosylation status of CD133 remain unclear.

View Article and Find Full Text PDF