In recent years, soft robotics has emerged as a rapidly expanding frontier research field that draws inspiration from the locomotion mechanisms of soft-bodied creatures in nature to achieve smooth and complex motion for diverse applications. However, the fabrication of soft robots with hybrid structures remains challenging due to limitations in material selection and the complex, multi-step processes involved in traditional manufacturing methods. Herein, a novel direct one-step additive manufacturing (3D printing) approach is introduced for the fabrication of hybrid robots composed of soft and rigid components for sophisticated tasks.
View Article and Find Full Text PDF4D printing combines 3D printing with nanomaterials to create shape-morphing materials that exhibit stimuli-responsive functionalities. In this study, reversible addition-fragmentation chain transfer polymerization agents grafted onto liquid metal nanoparticles are successfully employed in ultraviolet light-mediated stereolithographic 3D printing and near-infrared light-responsive 4D printing. Spherical liquid metal nanoparticles are directly prepared in 3D-printed resins via a one-pot approach, providing a simple and efficient strategy for fabricating liquid metal-polymer composites.
View Article and Find Full Text PDF