Chronic food restriction potentiates behavioral and cellular responses to drugs of abuse and D-1 dopamine receptor agonists administered systemically or locally in the nucleus accumbens (NAc). However, the alterations in NAc synaptic transmission underlying these effects are incompletely understood. AMPA receptor trafficking is a major mechanism for regulating synaptic strength, and previous studies have shown that both sucrose and d-amphetamine rapidly alter the abundance of AMPA receptor subunits in the NAc postsynaptic density (PSD) in a manner that differs between food-restricted and ad libitum fed rats.
View Article and Find Full Text PDFUroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood.
View Article and Find Full Text PDFWe examined the effect of Ca on skeletal muscle glucose transport and fatty acid oxidation using L6 cell cultures. Ca stimulation of glucose transport is controversial. We found that caffeine (a Ca secretagogue) stimulation of glucose transport was only evident in a two-part incubation protocol ("post-incubation").
View Article and Find Full Text PDFPurpose: High-motility group AT-hook gene 1 (HMGA1) is a non-histone nuclear binding protein that is developmentally regulated. HMGA1 is significantly overexpressed in and associated with high grade and advance stage of prostate cancer (PC). The oncogenic role of HMGA1 is at least mediated through chromosomal instability and structural aberrations.
View Article and Find Full Text PDFThe mechanism for how metformin activates AMPK (AMP-activated kinase) was investigated in isolated skeletal muscle L6 cells. A widely held notion is that inhibition of the mitochondrial respiratory chain is central to the mechanism. We also considered other proposals for metformin action.
View Article and Find Full Text PDFBackground: One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the cytotoxic activity of antineoplastic drugs. One of these transporters, the multiple resistant protein 7 (MRP7, ABCC10), has recently been shown to produce resistance to antineoplastic drugs by increasing the efflux of paclitaxel.
View Article and Find Full Text PDF