Tourism recommendation results are affected by many factors. Traditional recommendation methods have problems such as low recommendation accuracy and lack of personalization due to sparse data. This article uses implicit features such as contextual information, time-series travel trajectories, and comment data to address these issues.
View Article and Find Full Text PDFRecently, a lot of Chinese patients consult treatment plans through social networking platforms, but the Chinese medical text contains rich information, including a large number of medical nomenclatures and symptom descriptions. How to build an intelligence model to automatically classify the text information consulted by patients and recommend the correct department for patients is very important. In order to address the problem of insufficient feature extraction from Chinese medical text and low accuracy, this paper proposes a dual channel Chinese medical text classification model.
View Article and Find Full Text PDF