Publications by authors named "Jiangxuan Song"

Stabilization of the silicon-based anode in lithium-ion batteries heavily depends on electrolyte engineering. However, despite the effectiveness of localized high-concentration electrolytes in enhancing battery life, most studies have focused on solvents and lithium salts, highlighting the urgent need for advanced diluents tailored to silicon-based anodes. Here, a nonflammable electrolyte with a weakly lithiophilic diluent is reported by introducing methyl perfluorobutyl ether into a mixture of lithium bis(fluorosulfonyl)imide and 1,2-dimethoxyethane, for the enhancement of silicon-based anode.

View Article and Find Full Text PDF

3D printing technology enables the creation of complex ceramic structures and enhances the efficiency of customized ceramic production. Polymers play a crucial role in 3D-printed ceramic composites due to their unique processability, yet their significance and application strategies remain underexplored. These polymers not only enable rapid and precise 3D shaping but also offer additional advantages due to their unique and adjustable physicochemical properties.

View Article and Find Full Text PDF
Article Synopsis
  • Regulating the solid-electrolyte-interphase (SEI) composition is crucial for developing high-energy density lithium metal batteries, and this research presents a method to create a LiF-rich SEI for stability.
  • The study utilizes tris(4-aminophenyl) amine-pyromeletic dianhydride covalent organic frameworks (TP-COF) as an interlayer on the lithium metal anode, which enhances the reaction with FSI and promotes the formation of the desired SEI.
  • The resulting lithium metal battery, featuring a LiNiCoMnO|TP-COF@Li configuration, achieves impressive performance metrics, including high energy density (473.4 Wh/kg) and stable cycling over
View Article and Find Full Text PDF
Article Synopsis
  • Red phosphorus can store a lot of energy, making it useful for batteries, but it tends to expand too much and break easily.
  • Scientists created a new type of phosphorus battery that uses special layers of graphene oxide to make it stronger and tougher.
  • This new design makes the battery's size change much less, only about 8.2%, compared to the old ones that would change way more, which helps it work better.
View Article and Find Full Text PDF

Extensive investigations have proven the effectiveness of elastic binders in settling the challenge of structural damage posed by volume expansion of high-capacity anode used in nanoscale silicon. However, the sluggish ionic conductivity of polymer binder severely restricts the electrode reactions, making it unsuitable for practical applications. Inspired by the biological tissues with rapid neurotransmission and robust muscles, we propose a biomimetic binder that contains ionic conductive polymer (by polymerization reaction of poly(ethylene glycol) diglycidyl ether and polyethylenimine) and rigid polymer backbone (polyacrylic acid), which can effectively mitigate both Li-ion transport resistance and lithiation stress to stabilize the silicon nanoparticles during cycles.

View Article and Find Full Text PDF

The construction of a continuous ionic/electronic pathway is critical for Si-based sulfide all-solid-state batteries (ASSBs) with the advantages of high-energy density and high-cycle stability. However, a significant impediment arises from the parasitic reaction occurring between the ionic sulfide solid-state electrolyte and electronic carbon additive, posing a formidable challenge. Additionally, the fabrication of electrodes necessitates stringent operational conditions, further limiting practical applicability.

View Article and Find Full Text PDF

The advancement of Li-metal batteries is significantly impeded by the presence of unstable solid electrolyte interphase and Li dendrites upon cycling. Herein, we present an innovative approach to address these issues through the synergetic regulation of solid electrolyte interphase mechanics and Li crystallography using yttrium fluoride/polymethyl methacrylate composite layer. Specifically, we demonstrate the in-situ generation of Y-doped lithium metal through the reaction of composite layer with Li metal, which reduces the surface energy of the (200) plane, and tunes the preferential crystallographic orientation to (200) plane from conventional (110) plane during Li plating.

View Article and Find Full Text PDF

Quasiperiodic patterns and crystals-having long range order without translational symmetry-have fascinated researchers since their discovery. In this study, we report on new p-terphenyl-based T-shaped facial polyphiles with two alkyl end chains and a glycerol-based hydrogen-bonded side group that self-assemble into an aperiodic columnar liquid quasicrystal with 12-fold symmetry and its periodic liquid-crystalline approximants with complex superstructures. All represent honeycombs formed by the self-assembly of the p-terphenyls, dividing space into prismatic cells with polygonal cross-sections.

View Article and Find Full Text PDF

Lithium metal batteries (LMBs) are the most promising high energy density energy storage technologies for electric vehicles, military, and aerospace applications. LMBs require further improvement to operate efficiently when chronically or routinely exposed to high temperatures. Electrolyte engineering with high temperature tolerance and electrode compatibility has been essential to the development of LMBs.

View Article and Find Full Text PDF

Lithium (Li) metal, a promising anode for high-energy-density rechargeable batteries, typically grows along the low-surface energy (110) plane in the plating process, resulting in uncontrollable dendrite growth and unstable interface. Herein, an unexpected Li growth behavior by lanthanum (La) doping is reported: the preferred orientation turns to (200) from (110) plane, enabling 2D nuclei rather than the usual 1D nuclei upon Li deposition and thus forming a dense and dendrite-free morphology even at an ultrahigh areal capacity of 10 mAh cm . Noticeably, La doping further decreases the reactivity of Li metal toward electrolytes, thereby establishing a stable interface.

View Article and Find Full Text PDF

Lithium- and manganese-rich layered oxides (LMLOs, ≥ 250 mAh g ) with polycrystalline morphology always suffer from severe voltage decay upon cycling because of the anisotropic lattice strain and oxygen release induced chemo-mechanical breakdown. Herein, a Co-free single-crystalline LMLO, that is, Li[Li Ni Mn ]O (LLNMO-SC), is prepared via a Li /Na ion-exchange reaction. In situ synchrotron-based X-ray diffraction (sXRD) results demonstrate that relatively small changes in lattice parameters and reduced average micro-strain are observed in LLNMO-SC compared to its polycrystalline counterpart (LLNMO-PC) during the charge-discharge process.

View Article and Find Full Text PDF

Stable and soluble redox-active nitroxyl radicals are highly desired for high-capacity and long-life aqueous zinc hybrid flow batteries (AZHFBs). Here we report a "π-π" conjugated imidazolium and "p-π" conjugated acetylamino co-functionalized 2,2,6,6-tetramethylpiperidine-N-oxyl (MIAcNH-TEMPO) as stable catholyte for AZHFBs. The incorporation of double-conjugate substituents could delocalize the electron density of the N-O head and thus remarkably stabilize the radical and oxoammonium forms of TEMPO, avoiding the side reaction of ring-opening.

View Article and Find Full Text PDF

A stable rod-like sulfonated viologen (R-Vi) derivative is developed through a spatial-structure-adjustment strategy for neutral aqueous organic redox flow batteries (AORFBs). The obtained R-Vi features four individual methyl groups on the 2,2',6,6'-positions of the 4,4'-bipyridine core ring. The tethered methyls confine the movement of the alkyl chain as well as the sulfonic anion, thus driving the spatial structure from sigmoid to rod shape.

View Article and Find Full Text PDF

Alleviating large stress is critical for high-energy batteries with large volume change upon cycling, yet this still presents a challenge. Here, a gradient hydrogen-bonding binder is reported for high-capacity silicon-based anodes that are highly desirable for the next-generation lithium-ion batteries. The well-defined gradient hydrogen bonds, with a successive bond energy of -2.

View Article and Find Full Text PDF

Due to an ultrahigh theoretical specific capacity of 3860 mAh g, lithium (Li) is regarded as the ultimate anode for high-energy-density batteries. However, the practical application of Li metal anode is hindered by safety concerns and low Coulombic efficiency both of which are resulted fromunavoidable dendrite growth during electrodeposition. This study focuses on a critical parameter for electrodeposition, the exchange current density, which has attracted only little attention in research on Li metal batteries.

View Article and Find Full Text PDF

An organic dye, Basic blue 3 (BB3), was reported for the first time as a two-electron catholyte for aqueous redox flow batteries. The exceptional stability of BB3 enabled the full battery to achieve a high capacity retention of >99.991% per cycle during 1500 cycles.

View Article and Find Full Text PDF

Redox-active 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives have recently been investigated to expand the choice of catholyte for aqueous flow batteries (AFBs). However, the effects of substituent R in 4-position on redox potential and corresponding capacity fading mechanism are still unclear. Here, we conduct comparative studies of four R-TEMPO with R = -OH, -NH, -COOH, and -NHCOCH in zinc hybrid AFBs.

View Article and Find Full Text PDF

Metallic phase (1T) MoS has been regarded as an appealing material for hydrogen evolution reaction. In this work, a novel interface-induced strategy is reported to achieve stable and high-percentage 1T MoS through highly active 1T-MoS /CoS hetero-nanostructure. Herein, a large number of heterointerfaces can be obtained by interlinked 1T-MoS and CoS nanosheets in situ grown from the molybdate cobalt oxide nanorod under moderate conditions.

View Article and Find Full Text PDF

Potassium-ion batteries have attracted increasing attention for next-generation energy storage systems due to their high energy density and abundance of potassium. However, the lack of suitable anode highly hampers its practical application due to the large ionic radius of K . Herein, a Se P @mesoporous carbon (Se P @C) composite is reported as a high-performance anode for potassium-ion batteries.

View Article and Find Full Text PDF

Silicon-based materials are promising anodes for next-generation lithium-ion batteries, owing to their high specific capacities. However, the huge volume expansion and shrinkage during cycling result in severe displacement of silicon particles and structural collapse of electrodes. Here we report the use of a supremely elastic gel polymer electrolyte to address this problem and realize long-term stable cycling of silicon monoxide anodes.

View Article and Find Full Text PDF

A series of mesoporous germanium materials were synthesized via the self-templating method. Germanium tetrachloride and sodium potassium alloy were utilized as germanium precursor and reducing agent, respectively. The by-products, NaCl and KCl, could be considered as the in-situ templates.

View Article and Find Full Text PDF

Red phosphorus (P) has recently gained wide attention because of the high theoretical capacity of 2596 mA h/g, which has been regarded as promising anode material for lithium-ion batteries (LIBs). However, the actual application of red P in LIBs is hampered by the huge expansion of volume and low electronic conductivity. Herein, we design a kind of red phosphorus/crumpled nitrogen-doped graphene (P/CNG) nanocomposites with high capacity density and great rate performance as anode material for LIBs.

View Article and Find Full Text PDF

Despite high energy density and low cost, rechargeable Na-CO2 batteries are highly hindered by the poor reversibility of the discharge product Na2CO3. Herein, we demonstrate a porous ketjen black carbon-supported ruthenium nanoparticle (Ru@KB) cathode, which can remarkably promote the reversibility and thus leads to an excellent cycling performance.

View Article and Find Full Text PDF

Li-alloy-based anode materials are very promising for breaking current energy limits of lithium-ion battery technologies. Unfortunately, these materials still suffer from poor solid-electrolyte interphase (SEI) stability, resulting in unsatisfied electrochemical performances. The typical SEI formation method, electrochemical decomposition of electrolytes onto the active material surface, lacks a deliberate control of the SEI functions and structures.

View Article and Find Full Text PDF