Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET).
View Article and Find Full Text PDFAdenosine exerts a key role in analgesia. In the present study, adenosine-induced Ca(2+) responses were revealed by using confocal microscopy imaging in the rat dorsal root ganglia (DRG) neurons in vitro. Our results showed that adenosine could evoke increases in the intracellular Ca(2+) concentration in the DRG neurons.
View Article and Find Full Text PDFNitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
April 2012
The aim of this in vitro study was to evaluate the effects of low level laser irradiation on the proliferation of HeLa cells using 405 nm diode laser, 514 nm argon laser, 633 nm He-Ne laser, or 785 nm diode laser, The cells were seeded on 96-well microplates for 24 h in 5% fetal bovine serum containing medium, then irradiated with the laser at dose of 100 and 1 000 J x m(-2), respectively. At the time point of 24, 48, 72 h after irradiation, cell viability was assessed by MTT assay. The results show that 405, 633 and 785 nm laser irradiation induces wavelength-dependent and time-dependent proliferation.
View Article and Find Full Text PDFResponse surface methodology was employed to optimize the conditions for alkaline extraction of polysaccharides from Ganoderma lucidum. The results indicated that the optimum conditions were an extraction temperature of 60.1 degrees C, an extraction time of 77.
View Article and Find Full Text PDF