The identification and characterization of spontaneous symmetry breaking is central to our understanding of strongly correlated two-dimensional materials. In this work, we utilize the angle-resolved measurements of transport non-reciprocity to investigate spontaneous symmetry breaking in twisted trilayer graphene. By analysing the angular dependence of non-reciprocity in both longitudinal and transverse channels, we are able to identify the symmetry axis associated with the underlying electronic order.
View Article and Find Full Text PDFElectrically interfacing atomically thin transition metal dichalcogenide semiconductors (TMDSCs) with metal leads is challenging because of undesired interface barriers, which have drastically constrained the electrical performance of TMDSC devices for exploring their unconventional physical properties and realizing potential electronic applications. Here we demonstrate a strategy to achieve nearly barrier-free electrical contacts with few-layer TMDSCs by engineering interfacial bonding distortion. The carrier-injection efficiency of such electrical junction is substantially increased with robust ohmic behaviors from room to cryogenic temperatures.
View Article and Find Full Text PDFStrong electron correlation and spin-orbit coupling (SOC) can have a profound influence on the electronic properties of materials. We examine their combined influence on a 2-dimensional electronic system at the atomic interface between magic-angle twisted bilayer graphene and a tungsten diselenide crystal. Strong electron correlation within the moiré flatband stabilizes correlated insulating states at both quarter and half filling, and SOC transforms these Mott-like insulators into ferromagnets, evidenced by robust anomalous Hall effect with hysteretic switching behavior.
View Article and Find Full Text PDFTwisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we present experimental characterization of interaction effects and superconductivity signatures in p-type twisted double-bilayer WSe. Enhanced interlayer interactions are observed when the twist angle decreases to a few degrees as reflected by the high-order satellites in the electron diffraction patterns taken from the reconstructed domains from a conventional moiré superlattice.
View Article and Find Full Text PDFElectrons hopping in two-dimensional honeycomb lattices possess a valley degree of freedom in addition to charge and spin. In the absence of inversion symmetry, these systems were predicted to exhibit opposite Hall effects for electrons from different valleys. Such valley Hall effects have been achieved only by extrinsic means, such as substrate coupling, dual gating, and light illuminating.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides (TMDCs) are recently emerged electronic systems with various novel properties, such as spin-valley locking, circular dichroism, valley Hall effect, and superconductivity. The reduced dimensionality and large effective masses further produce unconventional many-body interaction effects. Here we reveal strong interaction effects in the conduction band of MoS by transport experiment.
View Article and Find Full Text PDFAtomically-thin black phosphorus (BP) field-effect transistors show strong-weak localization transition, which is tunable through gate voltages. Hopping transports through charge impurity-induced localized states are observed at low carrier density regime. Variable-range hopping model is applied to simulate scattering behaviors of charge carriers.
View Article and Find Full Text PDFThis work reports an experimental study on an antiferromagnetic honeycomb lattice of MnPS that couples the valley degree of freedom to a macroscopic antiferromagnetic order. The crystal structure of MnPS is identified by high-resolution scanning transmission electron microscopy. Layer-dependent angle-resolved polarized Raman fingerprints of the MnPS crystal are obtained, and the Raman peak at 383 cm exhibits 100% polarity.
View Article and Find Full Text PDFWe fabricate high-mobility p-type few-layer WSe_{2} field-effect transistors and surprisingly observe a series of quantum Hall (QH) states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field. By tilting the magnetic field, we discover Landau level crossing effects at ultralow coincident angles, revealing that the Zeeman energy is about 3 times as large as the cyclotron energy near the valence band top at the Γ valley. This result implies the significant roles played by the exchange interactions in p-type few-layer WSe_{2}, in which itinerant or QH ferromagnetism likely occurs.
View Article and Find Full Text PDFWe demonstrate that a field-effect transistor (FET) made of few-layer black phosphorus (BP) encapsulated in hexagonal boron nitride (h-BN) in vacuum exhibits a room-temperature hole mobility of 5200 cm/(Vs), being limited just by the phonon scattering. At cryogenic temperatures, the FET mobility increases up to 45 000 cm/(Vs), which is five times higher compared to the mobility obtained in earlier reports. The unprecedentedly clean h-BN-BP-h-BN heterostructure exhibits Shubnikov-de Haas oscillations and a quantum Hall effect with Landau level (LL) filling factors down to v = 2 in conventional laboratory magnetic fields.
View Article and Find Full Text PDFIn few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs.
View Article and Find Full Text PDFThe transfer-free synthesis of high-quality, large-area graphene on a given dielectric substrate, which is highly desirable for device applications, remains a significant challenge. In this paper, we report on a simple rapid thermal treatment (RTT) method for the fast and direct growth of high-quality, large-scale monolayer graphene on a SiO2/Si substrate from solid carbon sources. The stack structure of a solid carbon layer/copper film/SiO2 is adopted in the RTT process.
View Article and Find Full Text PDFTwo-dimensional (2D) atomic-layered heterostructures stacked by van der Waals interactions recently introduced new research fields, which revealed novel phenomena and provided promising applications for electronic, optical, and optoelectronic devices. In this study, we report the van der Waals epitaxial growth of high-quality atomically thin Bi2Se3 on single crystalline hexagonal boron nitride (h-BN) by chemical vapor deposition. Although the in-plane lattice mismatch between Bi2Se3 and h-BN is approximately 65%, our transmission electron microscopy analysis revealed that Bi2Se3 single crystals epitaxially grew on h-BN with two commensurate states; that is, the (1̅21̅0) plane of Bi2Se3 was preferably parallel to the (1̅100) or (1̅21̅0) plane of h-BN.
View Article and Find Full Text PDF