The growth hormone export PIN-FORMED (PIN) is an important carrier for regulating the polar transport of plant growth hormones and plays an important role in plant growth and development. However, little is known about the characteristics and functions of PINs in potatoes. In this study, 10 members were identified from potatoes and named , , , , , , , , , and according to their positions in the potato chromosome In addition, the expression of 10 was analyzed by qRT-PCR during potato root development.
View Article and Find Full Text PDFDNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in a variety of species, its systemic analysis in potato ( L.) is lacking and its potential role in abiotic stress responses remains unclear.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156.
View Article and Find Full Text PDFOne of the main impacts of drought stress on plants is an excessive buildup of reactive oxygen species (ROS). A large number of ·OH, highly toxic to cells, will be produced if too much ROS is not quickly cleared. At the heart of antioxidant enzymes is superoxide dismutase (SOD), which is the first antioxidant enzyme to function in the active oxygen scavenging system.
View Article and Find Full Text PDFStomata are specialized portals in plant leaves to modulate water loss from plants to the atmosphere by control of the transpiration, thereby determining the water-use efficiency and drought resistance of plants. Despite that the stomata developmental progression is well-understood at the molecular level, the experimental evidence that miRNA regulates stomata development is still lacking, and the underlying mechanism remains elusive. This study demonstrates the involvement of stu-miR827 in regulating the drought tolerance of potato due to its control over the leaf stomatal density.
View Article and Find Full Text PDFSuperoxide dismutase (SOD) actively participates in the wound stress of plants. However, whether mediates the generation of HO and the deposition of suberin polyphenolic and lignin at potato tuber wounds is elusive. In this study, we developed the interference expression of potato plants and tubers by -mediated transformation.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response.
View Article and Find Full Text PDFCalcium-dependent protein kinases (CDPK) are implicated in signaling transduction in eukaryotic organisms. It is largely unknown whether plays a role in the response to water deficiency and osmotic stress in potato plants ( L.).
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are about 21 snucleotide (nt) long, non-coding RNAs that play an important role in plant abiotic stress responses. Chinese jujube is a native fruit tree in China, which is also an admittedly drought-resistant plant. But the drought-related miRNAs have little been reported in jujube.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2022
Calcium-dependent protein kinase (CDPK) is a Ca sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis.
View Article and Find Full Text PDFAuxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis.
View Article and Find Full Text PDFThe potato ( L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor-responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses.
View Article and Find Full Text PDFReactive oxygen species (ROS) production is essential for both physiological processes and environmental stress in diverse plants. Previous studies have found that benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH)-inducible ROS were associated with wound healing of potato tubers. Calcium-dependent protein kinases (CDPKs), the important calcium receptors, are known to play a crucial part in plant development and adaptation to abiotic stresses.
View Article and Find Full Text PDFThe nuclear factor Y (NF-Y) family is comprised of transcription factors that have been implicated in multiple plant biological processes. However, little is known about this family in potato. In the present study, a total of 41 genes were identified in the potato genome.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2021
The root phenotype is an important aspect of plant architecture and plays a critical role in plant facilitation of the extraction of water and nutrition from the soil. MicroRNAs (miRNAs) are classes of small RNAs with important roles in regulating endogenous gene expression at the post-transcriptional level that function in a range of plant development processes and in the response to abiotic stresses. However, little is known concerning the molecular mechanism of miRNAs in regulating the generation and development of plant root architecture.
View Article and Find Full Text PDFRecent studies suggest that gut microbiota was associated with the bidirectional gut-brain axis which could modulate neuropsychological functions of the central nervous system. Gut microbiota could produce gamma aminobutyric acid (GABA) that could modulate the gut-brain axis response Jianpi Jieyu (JPJY) decoction, a traditional Chinese formula, is mainly composed of and Radix . Although the JPJY decoction has been used to treat the depression in China, the potential action of its antidepressant has not been well understood.
View Article and Find Full Text PDFStMAPK11 overexpression promotes potato growth, physiological activities and photosynthesis under drought conditions. Mitogen-activated protein kinases (MAPKs) are import regulators of MAPK pathway in plants under drought condition. However, the critical role in potato (Solanum tuberosum L.
View Article and Find Full Text PDFMitogen-activated protein kinase 3 (MAPK3) is involved in plant growth and development, as well as response to adverse stress. Here we aimed to explore the role of StMAPK3 in response to salt and osmosis stress. Polyethylene glycol (PEG) (5% and 10%) and mannitol (40 mM and 80 mM) were used to induce osmosis stress.
View Article and Find Full Text PDFQingfei Paidu decoction (QFPD), a multi-component herbal formula, has been widely used to treat COVID-19 in China. However, its active compounds and mechanisms of action are still unknown. Firstly, we divided QFPD into five functional units (FUs) according to the compatibility theory of traditional Chinese medicine.
View Article and Find Full Text PDFRuan Jian Qing Mai formula (RJQM), a multicomponent herbal formula, has been widely used to treat peripheral arterial disease (PAD) in China. However, its active compounds and mechanisms of action are still unknown. First, RNA sequencing analysis of 15 healthy and 16 PAD samples showed that 524 PAD differential genes were significantly enriched in Go Ontology (ribonucleotide metabolic process, oxidoreductase complex, and electron transfer activity), Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA pathways (OXPHOS and TCA cycle), miRNA (MIR183), and kinase (PAK6).
View Article and Find Full Text PDFBMC Plant Biol
August 2019
Background: Survival of plants in response to salinity stress is typically related to Na toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.).
Results: In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing Na content and improving K/Na ratio in plant leaves, while maintaining osmotic balance.
The GRAS gene family is a class of plant-specific transcription factors which play pivotal roles in the regulation of plant growth and development. At present, the GRAS gene family has been completely identified in Arabidopsis thaliana, however, there are no systematic research reports in potato. In the present study, we obtained an overview of the GRAS gene family including gene structure, gene expression, chromosome mapping and phylogenetic analysis, and 52 StGRASs were identified in the potato by bioinformatics analysis, which could be divided into eight subfamilies based on phylogeny.
View Article and Find Full Text PDFThe plant-specific TCP transcription factors, which play critical roles in diverse aspects of biological processes, have been identified and analyzed in various plant species. However, no systematical study of TCP family genes in potato (Solanum tuberosum L.) has been undertaken.
View Article and Find Full Text PDFThe NAC designation is derived from petunia () gene () and genes and (), which belongs to the family of plant-specific transcription factors (TFs), and plays important role in plant development processes, such as response to biotic and abiotic stress, and hormone signaling. MicroRNAs (miRNAs) are a class of small, non-coding endogenous RNAs which play versatile and significant role in plant stress response and development via negatively affecting gene expression at a post-transcriptional level. Here, we showed that Stu-mi164 had a complementary sequence in the CDS sequence of potato NAC TFs, and that NAC expression exhibited significant differences under osmotic stress.
View Article and Find Full Text PDF