C-P bond formation reactions have garnered significant attention due to the widespread presence of organophosphorus compounds in pharmaceuticals, phosphine-containing ligands, pesticides, and materials science. Consequently, various efficient methodologies have been established in recent decades for constructing C-P bonds. This review article traces the historical evolution of C-P bond research and explores the prospects of C-P bond formation.
View Article and Find Full Text PDFBackground: Male urethral stricture disease (USD) is predominantly characterized by scar formation. There are few effective therapeutic drugs, and comprehensive molecular characterizations of USD formation remain undefined.
Methods: The proteomic profiling of twelve scar tissues and five matched normal adjacent tissues (NATs).
Trends Biotechnol
December 2024
In seeking sustainable environmental strategies, microbial biophotoelectrochemistry (BPEC) systems represent a significant advancement. In this review, we underscore the shift from conventional bioenergy systems to sophisticated BPEC applications, emphasizing their utility in leveraging solar energy for essential biochemical conversions. Recent progress in BPEC technology has facilitated improved photoelectron transfer and system stability, resulting in substantial advancements in carbon and nitrogen fixation, degradation of pollutants, and energy recovery from wastewater.
View Article and Find Full Text PDFThe development of tuberculosis (TB) therapy has been marked by the discovery of natural-product-derived streptomycin, followed by the introduction of NP-derived rifampicin, representing a significant milestone in the history of TB management. However, TB remains a global challenge, with the emergence of multidrug-resistant highlighting the need for novel therapeutic agents. In this study, a bioinformatic approach was employed to investigate d-amino acid-activating adenylation domains, leading to the identification of cordysetin A (), a novel -decalin tetramic acid antibiotic from the ascomycete fungi .
View Article and Find Full Text PDFUnveiling a metabolic mystery, this article explores how 3-O-acylated bile acids, specifically 3-O-succinylated cholic acid (3-sucCA) and 3-acetylated cholic acid (3-acetyCA), modified by gut microbes Bacteroides uniformis and Christensenella minuta, respectively, may either disrupt or harmonize our metabolic processes, offering novel therapeutic avenues for conditions such as metabolic dysfunction-associated steatohepatitis (MASH) and type 2 diabetes mellitus (T2D).
View Article and Find Full Text PDFXenocoumacin 1 (Xcn 1), antibiotic discovered from secondary metabolites of Xenorhabdus nematophila, had the potential to develop into a new pesticide due to its excellent activity against bacteria, oomycetes and fungi. However, the current low yield of Xcn1 limits its development and utilization. To improve the yield of Xcn1, response surface methodology was used to determine the optimal composition of fermentation medium and one factor at a time approach was utilized to optimize the fermentation process.
View Article and Find Full Text PDFIn a recent report, Zampaloni et al. describe a novel tethered macrocyclic peptide (MCP) antibiotic, zosurabalpin, that disrupts the essential function of the LptBFGC complex in Gram-negative bacteria and demonstrates efficacy against carbapenem-resistant Acinetobacter baumannii (CRAB). Its preclinical success suggests a substantial shift in treating antibiotic resistance, pending clinical trials to validate its effectiveness, pharmacokinetics, and resistance management.
View Article and Find Full Text PDFTrends Microbiol
February 2024
In response to the severe global antibiotic resistance crisis, this forum delves into 'unculturable' bacteria, believed to be a promising source of novel antibiotics. We propose remarkable drug discovery strategies that leverage these bacteria's diversity, aspiring to transform resistance management. The urgent call for new antibiotics accentuates the essentiality of further research.
View Article and Find Full Text PDFAs China emerges as a synthetic biology (synbio) global leader, it faces distinct science-society challenges. Our series offers a snapshot of China's synbio state, emphasizing the intersection and its policy implications. The debut piece elucidates the intellectual property rights (IPR)-funding interplay in China's expanding synbio territory, underlining its key role in driving innovation and commercialization.
View Article and Find Full Text PDFIn the final article of the series, we delve into the crucial role of public engagement and ethical guidelines in shaping the trajectory of synthetic biology (synbio) within China's evolving scientific landscape. We discuss the interconnectedness of enhanced public discourse, stronger ethics, and responsible, transparent advancements in the field.
View Article and Find Full Text PDFOur second piece dissects China's intricate balancing act in synthetic biology (synbio), analyzing its adept maneuvering between fostering innovation and imposing strict regulations. The priority is enhancing biosecurity, biosafety, and public trust, crucial for sustainable gene editing advancements and preventing potential misuse of synthetic viruses.
View Article and Find Full Text PDFParsing the intricate interplay between gut microbiota, gene modulation, and host metabolism remains challenging. Wang et al. employed diverse methods to uncover how the gut microbiota reshapes intestinal lipid metabolism through the lncRNA Snhg9, underscoring the value of systems biology approaches in dissecting host-microbiome relationships involved in metabolic disorders.
View Article and Find Full Text PDFUnderstanding protein function by deciphering 3D structure has distinct limitations. A recent study by Huang et al. used AlphaFold2, an artificial intelligence (AI) protein-folding prediction model, to predict and classify deaminase proteins based on structural similarities, highlighting the untapped potential of AI in functional genomics and protein engineering.
View Article and Find Full Text PDFTrends Biochem Sci
February 2024
Wang et al. identified dipeptidyl peptidase 4 (DPP4) as a gut microbe-derived enzyme that impacts on host glucose metabolism. They further introduced a novel therapeutic, daurisoline-d4 (Dau-d4), a selective microbial DPP4 (mDPP4) inhibitor that shows promise in improving glucose tolerance, highlighting the potential of therapies that target both host enzymes and gut microbial enzymes.
View Article and Find Full Text PDFJ Agric Food Chem
October 2023
The glyphosate industry has long been a critical player in global agriculture, providing effective and economical solutions for weed control. However, growing concerns over environmental and health impacts have led to increased scrutiny and calls for more sustainable practices. This Viewpoint focuses on the scientific aspects of greener glyphosate synthesis strategies, discussing recent advancements in biobased pathways and catalytic methods, challenges such as scalability and technical hurdles, and future prospects for the herbicide industry.
View Article and Find Full Text PDFCyclic peptide natural products represent an important class of bioactive compounds and clinical drugs. Enzymatic side-chain macrocyclization of ribosomal peptides is a major strategy developed by nature to generate these chemotypes, as exemplified by the superfamily of ribosomally synthesized and post-translational modified peptides. Despite the diverse types of side-chain crosslinks in this superfamily, the participation of histidine residues is rare.
View Article and Find Full Text PDFSpiromaterpenes are a group of rare tropone-containing sesquiterpenes with antineuroinflammatory activity. Herein, we elucidate their biosynthetic pathway in a deep-sea-derived sp. fungus by heterologous expression, biochemical characterization, and incubation experiments.
View Article and Find Full Text PDFLinaridins and lanthipeptides are two classes of natural products belonging to the ribosomally synthesized and posttranslationally modified peptide (RiPP) superfamily. Although these two RiPP classes share similar structural motifs such as dehydroamino acids and thioether-based cross-links, the biosynthesis of linaridins and lanthipeptides involved distinct sets of enzymes. Here, we report the identification of a novel lanthipeptide cypepeptin from a recombinant strain of , which harbors most of the cypemycin (a prototypic linaridin) biosynthetic gene cluster but lacks the decarboxylase gene .
View Article and Find Full Text PDFGlyphosate is a widely used herbicide with an annual production of more than one million tons globally. Current commercialized production processes of glyphosate are generally associated with manufacturing hazards and toxic wastes. Recently, many countries have strengthened environmental supervision and law enforcement on glyphosate manufacturing.
View Article and Find Full Text PDFWith the progressive focus on renewable energy via biofuels production from lignocellulosic biomass, cellulases are the key enzymes that play a fundamental role in this regard. This study aims to unravel the characteristics of MSB8 () (a hyperthermophile from hot springs) thermostable glycoside hydrolase enzyme. Here, a glycoside hydrolase gene of () was heterologously expressed and characterized.
View Article and Find Full Text PDFGlyphosate has been widely and extensively used for weed control because of its excellent herbicidal profile and low costs. However, more than 750 glyphosate products are on the market and are increasingly regarded as water pollutants as they cause adverse effects on aquatic life. Dry cell weight and photosynthesis of Saccharina japonica female gametophytes increased when glyphosate was used as the sole phosphorus source at the concentration of less than 20 mg L.
View Article and Find Full Text PDFCompared to terrestrial environments, the oceans harbor a variety of environments, creating higher biodiversity, which gives marine natural products a high occurrence of significant biology and novel chemistry. However, traditional bioassay-guided isolation and purification strategies are severely limiting the discovery of additional novel natural products from the ocean. With an increasing number of marine microorganisms being sequenced, genome mining is gradually becoming a powerful tool to retrieve novel marine natural products.
View Article and Find Full Text PDFIn modern agriculture and weed management practices, herbicides have been widely used to control weeds effectively and represent more than 50% of commercial pesticides applied in the world. Herbicides with unique mechanisms of actions (MOA) have historically been discovered and commercialized every two or three years from the 1950s to the 1980s. However, this trend lowered dramatically as no herbicide with a novel MOA has been marketed for more than 30 years.
View Article and Find Full Text PDFRecently infectious diseases caused by the increased emergence and rapid spread of drug-resistant bacterial isolates have been one of the main threats to global public health because of a marked surge in both morbidity and mortality. The only phosphonate antibiotic in the clinic, fosfomycin, is a small broad-spectrum molecule that effectively inhibits the initial step in peptidoglycan biosynthesis by blocking the enzyme, MurA in both Gram-positive and Gram-negative bacteria. As fosfomycin has a novel mechanism of action, low toxicity, a broad spectrum of antibacterial activity, excellent pharmacodynamic/pharmacokinetic properties, and good bioavailability, it has been approved for clinical use in the treatment of urinary tract bacterial infections in many countries for several decades.
View Article and Find Full Text PDFFungi are a source of novel phytotoxic compounds to be explored in the search for effective and environmentally safe herbicides. The genetic inactivation of the biosynthetic pathway of the new phytotoxin cichorine has led to the isolation of three novel phytotoxins from the fungus : 8-methoxycichorine (), 8--methoxycichorine (), and -(4'-carboxybutyl) cichorine (). The structure of the new compounds was clearly determined by a combination of nuclear magnetic resonance (NMR) analysis and high-resolution electrospray ionization (HRESIMS).
View Article and Find Full Text PDF