Raphanobrassica (RRCC, 2n = 4x = 36), which is generated by distant hybridization between the maternal parent Raphanus sativus (RR, 2n = 2x = 18) and the paternal parent Brassica oleracea (C°C°, 2n = 2x = 18), displays intermediate silique phenotypes compared to diploid progenitors. However, the hybrid shares much more similarities in silique phenotypes with those of B. oleracea than those of R.
View Article and Find Full Text PDFCrosses that lead to heterosis have been widely used in the rapeseed ( L.) industry. Cytoplasmic male sterility (CMS)/restorer-of-fertility () systems represent one of the most useful tools for rapeseed production.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFBrassica rapa and Raphanus sativus are two important edible vegetables that contain numerous nutritional ingredients. However, the agronomic traits and nutritional components of the intergeneric hybrid of B. rapa and R.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) combining high-throughput genome resequencing and phenotyping can accelerate the dissection of genetic architecture and identification of genes for plant complex traits. In this study, we developed a rapeseed genomic variation map consisting of 4 542 011 SNPs and 628 666 INDELs. GWAS was performed for three seed-quality traits, including erucic acid content (EAC), glucosinolate content (GSC) and seed oil content (SOC) using 3.
View Article and Find Full Text PDFInterspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease.
View Article and Find Full Text PDFPlants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR.
View Article and Find Full Text PDFPod shattering resistance index (SRI) is a key factor affecting the mechanical harvesting of rapeseed. Research on the differences in pod shattering resistance levels of various rapeseed varieties can provide a theoretical basis for varietal breeding and application in mechanical harvesting. The indicators on pod shattering resistance including pod morphology and wall components were evaluated on eight hybrids and open pollinators, respectively, during 2012-2014.
View Article and Find Full Text PDFHigh-density genetic markers are the prerequisite for understanding linkage disequilibrium (LD) and genome-wide association studies (GWASs) of complex traits in crops. To evaluate the LD pattern in oilseed rape, we sequenced a previous association panel containing 189 B. napus inbred lines using double-digested restriction-site associated DNA (ddRAD) and genotyped 19,327 RAD tags.
View Article and Find Full Text PDFTo determine the effects of plant density and row spacing on the mechanical harvesting of rapeseed (Brassica napus L.), field experiments were conducted. Higher plant density produced fewer pods and reduced the yield per plant.
View Article and Find Full Text PDFTrichoderma harzianum TH12 is a microbial pesticide for certain rapeseed diseases. The mechanism of systemic resistance induced by TH12 or its cell-free culture filtrate (CF) in Brassica napus (AACC) and Raphanus alboglabra (RRCC) to powdery mildew disease caused by ascomycete Erysiphe cruciferarum was investigated. In this study, we conducted the first large-scale global study on the cellular and molecular aspects of B.
View Article and Find Full Text PDFRaphanus sativus is an important Brassicaceae plant and also an edible vegetable with great economic value. However, currently there is not enough transcriptome information of R. sativus tissues, which impedes further functional genomics research on R.
View Article and Find Full Text PDFIn Brassica napus, yellow petals had a much higher content of carotenoids than white petals present in a small number of lines, with violaxanthin identified as the major carotenoid compound in yellow petals of rapeseed lines. Using positional cloning we identified a carotenoid cleavage dioxygenase 4 gene, BnaC3.CCD4, responsible for the formation of flower colour, with preferential expression in petals of white-flowered B.
View Article and Find Full Text PDFIdentification and molecular analysis of four tribenuron-methyl resistant mutants in Brassica napus , which would be very useful in hybrid production using a Chemically induced male sterility system. Chemically induced male sterility (CIMS) systems dependent on chemical hybridization agents (CHAs) like tribenuron-methyl (TBM) represent an important approach for practical utilization of heterosis in rapeseed. However, when spraying the female parents with TBM to induce male sterility the male parents must be protected with a shield to avoid injury to the stamens, which would otherwise complicate the seed production protocol and increase the cost of hybrid seed production.
View Article and Find Full Text PDFRaphanus sativus is not only a popular edible vegetable but also an important source of medicinal compounds. However, the paucity of knowledge about the transcriptome of R. sativus greatly impedes better understanding of the functional genomics and medicinal potential of R.
View Article and Find Full Text PDFTheor Appl Genet
January 2014
Yield is one of the most important traits for rapeseed (Brassica napus L.) breeding, but its genetic basis remains largely ambiguous. Association mapping has provided a robust approach to understand the genetic basis of complex agronomic traits in crops.
View Article and Find Full Text PDFBackground: The presence of homoeologous sequences and absence of a reference genome sequence make discovery and genotyping of single nucleotide polymorphisms (SNPs) more challenging in polyploid crops.
Results: To address this challenge, we constructed reduced representation libraries (RRLs) for two Brassica napus inbred lines and their 91 doubled haploid (DH) progenies using a modified ddRADseq technique. A bioinformatics pipeline termed RFAPtools was developed to discover and genotype SNPs and presence/absence variations (PAVs).
Brassica napus (AACC) is a recent allotetraploid species evolved through hybridization between two diploids, B. rapa (AA) and B. oleracea (CC).
View Article and Find Full Text PDFUnderstanding the population structure and linkage disequilibrium (LD) is a prerequisite for association mapping of complex traits in a target population. In this study, we assessed the genetic diversity, population structure and the extent of LD in a panel of 192 inbred lines of Brassica napus from all over the world using 451 single-locus microsatellite markers. The inbred lines could be divided into P1 and P2 groups by a model-based population structure analysis.
View Article and Find Full Text PDFSilique length (SL) and seed weight (SW) are two important yield-related traits controlled by quantitative trait loci (QTL) in oilseed rape (Brassica napus L.). The genetic bases underlying these two traits are largely unknown at present.
View Article and Find Full Text PDFEvaluation of the genetic diversity in conventional and modern rapeseed cultivars is essential for conservation, management and utilization of these genetic resources for high yielding hybrid production. The objective of this research was to evaluate a collection of 86 oilseed rape cultivars with 188 simple sequence repeat (SSR) markers to assess the genetic variability, heterotic group identity and relationships within and between the groups identified among the genotypes. A total of 631 alleles at 188 SSR markers were detected including 53 and 84 unique and private alleles respectively, which indicated great richness and uniqueness of genetic variation in these selected cultivars.
View Article and Find Full Text PDFBackground: The Multinational Brassica rapa Genome Sequencing Project (BrGSP) has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B.
View Article and Find Full Text PDFBackground: Distant hybridization can result genome duplication and allopolyploid formation which may play a significant role in the origin and evolution of many plant species. It is unclear how the two or more divergent genomes coordinate in one nucleus with a single parental cytoplasm within allopolyploids. We used cytological and molecular methods to investigate the genetic and epigenetic instabilities associated with the process of distant hybridization and allopolyploid formation, measuring changes in chromosome number and DNA methylation across multiple generations.
View Article and Find Full Text PDFAlthough dwarf genes have been widely used to improve lodging resistance and enhance harvest index in cereal crops, lodging is still a serious problem in rapeseed (Brassica napus) production. A semi-dwarf B. napus mutant, ds-1, was identified through EMS mutagenesis of a microspore-cultured DH line.
View Article and Find Full Text PDFMicrosatellite or simple sequence repeat (SSR) markers are routinely used for tagging genes and assessing genetic diversity. In spite of their importance, there are limited numbers of SSR markers available for Brassica crops. A total of 627 new SSR markers (designated BnGMS) were developed based on publicly available genome survey sequences and used to survey polymorphisms among six B.
View Article and Find Full Text PDF