The non-specific adsorption behaviors of various interferents on the surface of a molecularly imprinted polymer (MIP) are adverse for the selectivity of an MIP-based sensor, which can be overcome via a differential strategy by using the differential signal between MIP- and non-imprinted polymer (NIP)-based sensors. However, the normal differential mode is not suitable for the MIP-based sensors with non-linear calibration curves. Herein, an improved differential strategy is reported for an MIP-based sensor with a semi-logarithmic calibration curve, demonstrated by an electrochemiluminescence (ECL) sensor for dopamine (DA).
View Article and Find Full Text PDFIn this work, a potential-resolved electrochemiluminescence (ECL) multiplex immunoassay (MIA) was developed using zirconium-based metal-organic framework (MOF) nanoparticles with intense self-ECL as an anodic ECL tag and CdTe nanocrystals (NCs) as a cathodic ECL tag. ECL luminophore 5,5'-(anthracene-9,10-diyl)diisophthalic acid (HADIP) and coreactant hexamethylenetetramine (HMT) bound to zirconium nodes in the MOF, giving Zr-ADIP-HMT nanoparticles. Benefiting from the intrareticular charge transfer (ICT) between the oxidized ligands of HADIP and HMT via hydrogen bonds, the intense self-ECL from Zr-ADIP-HMT was applied to the potential-resolved ECL MIA without an exogenous anodic coreactant, which can eliminate detrimental effects of multiplex coreactants and anodic ECL emission from CdTe NCs.
View Article and Find Full Text PDFWe reported a facile strategy to assemble a ratiometric nanosensor for the ovalbumin (OVA) fluorescence determination and meanwhile it can be utilized for selective visual identification by naked eyes with fluorescent test papers under 365 nm UV lamp. The nanosensor was prepared through simply mixing blue color carbon dots (CDs) and green color core-shell imprinted polymers. Blue CDs were used directly as the internal reference without participating in the imprinting process and modified molecularly imprinted polymers (MIPs) were synthesized by post-imprinting, using fluorescein isothiocyanate (FITC) as fluorescence enhanced signal.
View Article and Find Full Text PDFManganese-doped ZnS quantum dots (ZnS:Mn(II) QDs) were synthesized and modified with L-cysteine (L-Cys) and 6-mercaptonicotinic acid (MNA). This prevents the aggregation of the QDs and makes them available for the interaction with Cu(II) ions via Cu(II)-S interaction. As a result, the fluorescence of the QDs is quenched by Cu(II) due to an electron transfer mechanism.
View Article and Find Full Text PDF