As the core sensing elements of ultra-long fiber interferometer, the distributed thermal strain difference of the fiber rings can cause extra noise of the flexural disk, resulting in a penalty of the deterioration accuracy. In this paper, the thermal strain distribution characteristics of the fiber ring are firstly analyzed by the finite element method (FEM), and the distribution result is consistent with that demonstrated by the Rayleigh optical frequency-domain reflectometry (R-OFDR) strain measurement. The interferometer phase noise caused by the distributed strain difference is further studied by constructing a fully symmetric polarization-maintaining fiber-ring Mach-Zehnder interferometer (MZI) with an arm length of over 100 meters.
View Article and Find Full Text PDFA kind of hybrid fiber interferometer consisting of a fiber Sagnac interferometer (FSI), a closed-cavity Fabry-Perot interferometer (FPI), and an open-cavity FPI is proposed for generating combined-Vernier-effect. Through adjusting the polarization-maintaining fiber (PMF) length of the FSI, the free spectral range (FSR) is tailored to be similar to that of the parallel-connected reference FPI for producing the first Vernier effect, of which the spectrum is used to match the sensing FPI spectrum for obtaining the second Vernier effect. Noticeable lower and upper spectral envelopes are achieved in the first and second Vernier effects, respectively, so called the combined-Vernier spectrum.
View Article and Find Full Text PDF