Publications by authors named "Jiangqing Chen"

The success of chimeric antigen receptor (CAR) T cell therapy in treating several hematopoietic malignancies has been difficult to replicate in solid tumors, in part because of T cell exhaustion and eventually dysfunction. To counter T cell dysfunction in the tumor microenvironment, we metabolically armored CAR T cells by engineering them to secrete interleukin-10 (IL-10). We show that IL-10 CAR T cells preserve intact mitochondrial structure and function in the tumor microenvironment and increase oxidative phosphorylation in a mitochondrial pyruvate carrier-dependent manner.

View Article and Find Full Text PDF

The robust and stable expression of CD38 in T-cell acute lymphoblastic leukemia (T-ALL) blasts makes CD38 chimeric antigen receptor (CAR)-T/natural killer (NK) a potential therapy for T-ALL. However, CD38 expression in normal T/NK cells causes fratricide of CD38 CAR-T/NK cells. Here a "2-in-1" gene editing strategy is developed to generate fratricide-resistant locus-specific CAR-T/NK cells.

View Article and Find Full Text PDF

CAR-T therapies to treat T-cell malignancies face unique hurdles. Normal and malignant T cells usually express the same target for CAR, leading to fratricide. CAR-T cells targeting CD7, which is expressed in various malignant T cells, have limited expansion due to fratricide.

View Article and Find Full Text PDF

CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors.

View Article and Find Full Text PDF

Although most patients with thyroid cancers have good prognosis and long-term survival, some patients are refractory to traditional therapeutic approaches and face a high risk of mortality. CAR-T therapy provides an attractive strategy to treat these patients. Considering the limited expression in thyroid tissues, thyroid-stimulating hormone receptor (TSHR) has been considered as a promising candidate as CAR-T target.

View Article and Find Full Text PDF

How single-chain variable fragments (scFvs) affect the functions of chimeric antigen receptors (CARs) has not been well studied. Here, the components of CAR with an emphasis on scFv were described, and then several methods to measure scFv affinity were discussed. Next, scFv optimization studies for CD19, CD38, HER2, GD2 or EGFR were overviewed, showing that tuning the affinity of scFv could alleviate the on-target/off-tumor toxicity.

View Article and Find Full Text PDF

T cell genome editing holds great promise to advance a range of immunotherapies but is encumbered by the dependence on difficult-to-produce and expensive viral vectors. Here, small double-stranded plasmid DNA modified to mediate high-efficiency homologous recombination is designed. The resulting chimeric antigen receptor (CAR)-T cells display a similar phenotype, transcriptional profile, and in vivo potency to CAR-T cells generated using adeno-associated viral vector.

View Article and Find Full Text PDF

Chimeric antigen receptor T (CAR-T) cell therapy, which adoptively transfers engineered T cells expressing synthetic receptors to target specific antigens, has achieved great clinical success in treating hematological malignancies. Though FDA has approved two CAR-T products, CAR-T therapy can cause some side effects, such as cytokine release syndrome (CRS), neurotoxicity and B cell aplasia. Meanwhile, lacking tumor specific antigen and the suppressive tumor environment limit the efficacy of CAR-T therapy in solid tumor.

View Article and Find Full Text PDF

We recently reported that dietary supplementation with L-proline (proline) during gestation improved embryonic survival in C57BL/6J mice. The objective of the present study was to test the hypothesis that the effect of maternal proline supplementation on embryonic survival can be carried forward to the first generation female offspring. In the F0 generation, pregnant dams were fed a purified diet supplemented with 0 (control) or 5 g proline/kg diet.

View Article and Find Full Text PDF