Biochar has been widely used for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but its mechanism of influencing PAH biodegradation remains unclear. Here, DNA-stable isotope probing coupled with high-throughput sequencing was employed to assess its influence on phenanthrene (PHE) degradation, the active PHE-degrading microbial community and PAH-degradation genes (PAH-RHD). Our results show that both Low-BC and High-BC (soils amended with 1 % and 4 % w/w biochar, respectively) treatments significantly decreased PHE biodegradation and bioavailable concentrations with a dose-dependent effect compared to Non-BC treatment (soils without biochar).
View Article and Find Full Text PDFMicroplastics (MPs) are widely distributed in aquatic environments. They may release toxic substances or act as carriers for other organic compounds and pathogens, with potential to cause harm to the ecological environment and human health. A key concern is how MPs interact with organic compounds.
View Article and Find Full Text PDF