There is a lack of knowledge about which risk factors are more important in West Nile virus (WNV) transmission and risk magnitude. A better understanding of the risk factors is of great help in developing effective new technologies and appropriate prevention strategies for WNV infection. A contribution analysis of all risk factors in WNV infection would identify those major risk factors.
View Article and Find Full Text PDFTo respond to emerging public health threats such as West Nile virus, an advanced geographic information systems (GIS) -driven Web-based real-time surveillance system was developed to serve the National West Nile virus dead bird surveillance programme in Canada. The development of this system uses real-time Web GIS technologies and services to enhance conventional real-time surveillance systems based on real-time GIS requirements. The system has three modules: QuickTrack, QuickMap and QuickManage.
View Article and Find Full Text PDFBackground: An extensive West Nile virus surveillance program of dead birds, mosquitoes, horses, and human infection has been launched as a result of West Nile virus first being reported in Canada in 2001. Some desktop and web GIS have been applied to West Nile virus dead bird surveillance. There have been urgent needs for a comprehensive GIS services and real-time surveillance.
View Article and Find Full Text PDFA patchy model for the spatial spread of West Nile virus is formulated and analyzed. The basic reproduction number is calculated and com- pared for different long-range dispersal patterns of birds, and simulations are carried out to demonstrate discontinuous or jump spatial spread of the virus when the birds' long-range dispersal dominates the nearest neighborhood interaction and diffusion of mosquitoes and birds.
View Article and Find Full Text PDF