Background: Metastasis is a complex process involving multiple factors and stages, in which tumor cells and the tumor microenvironment (TME) play significant roles. A combination of orally bioavailable therapeutic agents that target both tumor cells and TME is conducive to prevent or impede the progression of metastasis, especially when undetectable. However, sequentially overcoming intestinal barriers, ensuring biodistribution in tumors and metastatic tissues, and enhancing therapeutic effects required for efficient therapy remain challenging.
View Article and Find Full Text PDFThe present study prepared shell-core nanoparticles comprising poly(lactic-co-glycolic acid)(PLGA) cores encapsulated by shells composed of mixed lipids(Lipoid S100 and DSPE-PEG 2000) or polymer F127 to investigate the effects of shell composition on overcoming physiological barriers of gastrointestinal mucus and intestinal epithelial cells and improving bioavailability.The results are expected to provide references for the research on the improvement of the oral bioavailability of Chinese medicine by nanocar-riers. Silibinin(SLB) was used as a model drug to prepare PLGA nanoparticles coated with the shell of mixed lipids(SLB-LPNs) or F127(SLB-FPNs) via a modified nanoprecipitation method.
View Article and Find Full Text PDFIn the current study, schisandrin B(SchB)-loaded F127 modified lipid-polymer hybrid nanoparticles(SchB-F-LPNs) were developed to improve the inhibition of breast cancer lung metastasis. Modified nanoprecipitation method was used to prepare SchB-F-LPNs. The nanoparticles were spherical in shape with shell-core structure by TEM observation.
View Article and Find Full Text PDFBackground: Breast cancer lung metastasis occurs in more than 60% of all patients with breast cancer, and most of those afflicted by it eventually die of recurrence. The tumor microenvironment plays vital roles in metastasis. Modulating the tumor microenvironment via multiple pathways could efficiently prevent or inhibit lung metastasis.
View Article and Find Full Text PDFTo improve Biopharmaceutics Classification System class IV drug bioavailability, mucus and underlying intestinal epithelial barriers must be overcome. Hydrophilic nanoparticle coatings may hinder cellular uptake and transport. We integrated hydrophilic, detachable poly(N-(2-hydroxypropyl) methacrylamide) with vitamin B12-modified chitosan into lipid polymeric nanoparticles (H/VC-LPNs) to enhance mucus penetration, intracellular uptake, and transepithelial absorption.
View Article and Find Full Text PDFOral route of administration is preferred for treating breast cancer, especially when continued disease management with good tolerability is required; however, orally administered chemotherapeutics combined with near-infrared (NIR) dyes are hindered by the low bioavailability, insufficient for the desired therapeutic efficacy. In this study, we developed a hybrid self-microemulsifying drug delivery system for co-loading curcumin-phospholipid complex and NIR dye IR780 (CUR/IR780@SMEDDS), to achieve combined phototherapeutic and chemotherapeutic effects against lung metastasis of breast cancer. CUR/IR780@SMEDDS were characterized.
View Article and Find Full Text PDF