Publications by authors named "Jianglin Ouyang"

Selective laser melting used in manufacturing custom-made titanium implants becomes more popular. In view of the important role played by osteoclasts in peri-implant bone resorption and osseointegration, we modified selective laser melting-manufactured titanium surfaces using sandblasting/alkali-heating and sandblasting/acid-etching, and investigated their effect on osteoclast differentiation as well as their underlying mechanisms. The properties of the surfaces, including elements, roughness, wettability and topography, were analyzed.

View Article and Find Full Text PDF

Background: Selective laser melting (SLM) titanium is an ideal option to manufacture customized implants with suitable surface modification to improve its bioactivity. The peri-implant soft tissues form a protective tissue barrier for the underlying osseointegration. Therefore, original microrough SLM surfaces should be treated for favorable attachment of surrounding soft tissues.

View Article and Find Full Text PDF

Selective laser melting (SLM) has promising prospects in manufacturing customized implants, however the rough surface of SLM titanium specimen can facilitate bacterial adherence and biofilm formation, which is a risk to implant success. Therefore, surface modification is required to enhance its antibacterial efficacy. Sandblasting, anodization and electrochemical deposition were applied to construct a novel composite nanostructure of nanophase calcium phosphate embedded to TiO nanotubes on microrough SLM titanium substrates (NTN).

View Article and Find Full Text PDF

The selective laser melting (SLM) technique is a recent additive manufacturing (AM) technique. Several studies have reported success in the SLM-based production of biocompatible orthopaedic implants and three-dimensional bone defect constructs. In this study, we evaluated the surface properties and biocompatibility of an SLM titanium implant in vitro and compared them with those of a machined (MA) titanium control surface.

View Article and Find Full Text PDF