We used an in vitro model of the human brain immune microenvironment to simulate hypoxic-ischemic brain injury (HIBI) and treatment with human umbilical cord mesenchymal stem cells (hUMSCs) to address the transformation barriers of gene differences between animals and humans in preclinical research. A co-culture system, termed hNAME, consisted of human hippocampal neurons (N), astrocytes (A), microglia (M), and brain microvascular endothelial cells (E). Flow cytometry measured the apoptosis rates of neurons and endothelial cells.
View Article and Find Full Text PDFFront Comput Neurosci
February 2022
Among electroencephalogram (EEG) signal emotion recognition methods based on deep learning, most methods have difficulty in using a high-quality model due to the low resolution and the small sample size of EEG images. To solve this problem, this study proposes a deep network model based on dynamic energy features. In this method, first, to reduce the noise superposition caused by feature analysis and extraction, the concept of an energy sequence is proposed.
View Article and Find Full Text PDF