The ring strain present in azetidines can lead to undesired stability issues. Herein, we described a series of N-substituted azetidines which undergo an acid-mediated intramolecular ring-opening decomposition via nucleophilic attack of a pendant amide group. Studies were conducted to understand the decomposition mechanism enabling the design of stable analogues.
View Article and Find Full Text PDFCyclic peptides have long tantalized drug designers with their potential ability to combine the best attributes of antibodies and small molecules. An ideal cyclic peptide drug candidate would be able to recognize a protein surface like an antibody while achieving the oral bioavailability of a small molecule. It has been hypothesized that such cyclic peptides balance permeability and solubility using their solvent-dependent conformational flexibility.
View Article and Find Full Text PDFThe chemokine receptor CXCR7 is an attractive target for a variety of diseases. While several small-molecule modulators of CXCR7 have been reported, peptidic macrocycles may provide advantages in terms of potency, selectivity, and reduced off-target activity. We produced a series of peptidic macrocycles that incorporate an N-linked peptoid functionality where the peptoid group enabled us to explore side-chain diversity well beyond that of natural amino acids.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
November 2017
The HIV reservoir forming at the earliest stages of infection is likely composed of CCR5 cells, because these cells are the targets of transmissible virus. Restriction of the CCR5 reservoir, particularly in the gut, may be needed for subsequent cure attempts. Strategies for killing or depleting CCR5 cells have been described, but none have been tested in vivo in nonhuman primates, and the extent of achievable depletion from tissues is not known.
View Article and Find Full Text PDFThrough fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.
View Article and Find Full Text PDFIn situ reaction monitoring tools offer the ability to track the progress of a synthetic reaction in real time to facilitate reaction optimization and provide kinetic/mechanistic insight. Herein, we report the utilization of flow NMR, flow IR, and other off-line spectroscopy tools to monitor the progress of a flow chemistry reaction. The on-line and off-line tools were selected to facilitate the stereoselective kinetic resolution of a key racemic monomer, which lacked a chromophore, making conventional reaction monitoring difficult.
View Article and Find Full Text PDFLysophospholipase-like 1 (LYPLAL1) is an uncharacterized metabolic serine hydrolase. Human genome-wide association studies link variants of the gene encoding this enzyme to fat distribution, waist-to-hip ratio, and nonalcoholic fatty liver disease. We describe the discovery of potent and selective covalent small-molecule inhibitors of LYPLAL1 and their use to investigate its role in hepatic metabolism.
View Article and Find Full Text PDFWe report a modular three-component dynamic kinetic resolution (DKR) that affords enantiomerically enriched hemiaminal esters derived from azoles and aldehydes. The novel and scalable reaction can be used to synthesize valuable substituted azoles in a regioselective manner by capping (e.g.
View Article and Find Full Text PDFSelective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model.
View Article and Find Full Text PDFHyperglycemia resulting from type 2 diabetes mellitus (T2DM) is the main cause of diabetic complications such as retinopathy and neuropathy. A reduction in hyperglycemia has been shown to prevent these associated complications supporting the importance of glucose control. Glucokinase converts glucose to glucose-6-phosphate and determines glucose flux into the β-cells and hepatocytes.
View Article and Find Full Text PDFA supercritical fluid chromatography method was developed for the detection of intramolecular hydrogen bonds in pharmaceutically relevant molecules. The identification of compounds likely to form intramolecular hydrogen bonds is an important drug design consideration given the correlation of intramolecular hydrogen bonding with increased membrane permeability. The technique described here correlates chromatographic retention with the exposed polarity of a molecule.
View Article and Find Full Text PDFSurface Plasmon Resonance (SPR) is rarely used as a primary High-throughput Screening (HTS) tool in fragment-based approaches. With SPR instruments becoming increasingly high-throughput it is now possible to use SPR as a primary tool for fragment finding. SPR becomes, therefore, a valuable tool in the screening of difficult targets such as the ubiquitin E3 ligase Parkin.
View Article and Find Full Text PDFUtilizing a structure based design approach, combined with extensive medicinal chemistry execution, highly selective, potent and novel BACE1 inhibitor 8 (BACE1 Alpha assay IC50=8nM) was made from a weak μM potency hit in an extremely efficient way. The detailed SAR and general design approaches will be discussed.
View Article and Find Full Text PDFThe heterodimer HIF-1α (hypoxia inducible factor)/HIF-β (also known as ARNT-aryl hydrocarbon nuclear translocator) is a key mediator of cellular response to hypoxia. The interaction between these monomer units can be modified by the action of small molecules in the binding interface between their C-terminal heterodimerization (PasB) domains. Taking advantage of the presence of several cysteine residues located in the allosteric cavity of HIF-1α PasB domain, we applied a cysteine-based reactomics "hotspot identification" strategy to locate regions of HIF-1α PasB domain critical for its interaction with ARNT.
View Article and Find Full Text PDFThe Per-Arnt-Sim (PAS) domains of hypoxia-inducible transcription factors (HIF) mediate heterodimer formation between the HIF-α forms that are induced in the event of cellular hypoxia and the constitutive HIF-β variants. Previous efforts toward structural characterization of the HIF-1α PAS domains were limited by protein stability. Using homology modeling based on the published crystal structure of the PAS-B domain of the homologous protein HIF-2α in complex with the partner HIF-β (also known as ARNT), we have identified a variant of HIF-1α with improved solubility, monodispersity, and stability.
View Article and Find Full Text PDFPhosphoinositide-dependent kinase-1 (PDK1) is a critical enzyme in the PI3K/AKT pathway and to the activation of AGC family protein kinases, including S6K, SGK, and PKC. Dysregulation of this pathway plays a key role in cancer cell growth, survival and tumor angiogenesis. As such, inhibitors of PDK1 offer the promise of a new therapeutic modality for cancer treatment.
View Article and Find Full Text PDFWhile nonstructural protein 4B (NS4B) from hepatitis C virus (HCV) is absolutely required for viral propagation, a full understanding of the enzymatic properties of this protein is lacking. Previous studies suggest that NS4B is located at the endoplasmic reticulum and that the protein structure consists of four central transmembrane domains with the N- and C-termini located in the cytoplasm of the host cell. To characterize the enzymatic activity of NS4B, the full-length protein with a C-terminal His tag was expressed in Sf9 insect cells and stabilized with nonionic detergents during purification.
View Article and Find Full Text PDFResidual dipolar couplings (RDCs) induced by anisotropic media are a powerful tool for the structure determination of biomolecules through NMR spectroscopy. Recent advances have proven it to be a valuable tool for determination of the stereochemistry of organic molecules. By simple inspection or order matrix calculations, RDCs provide unambiguous information about the relative configurations or complete stereochemistry of organic compounds.
View Article and Find Full Text PDFA novel methodology using the order matrix calculation to determine the absolute sign of spin-spin couplings based on the structure of organic compounds is presented. The sign of the residual dipolar coupling (RDC) depends on the sign of corresponding scalar spin-spin coupling constant and the sign of the RDC has a dramatic influence on the order matrix calculation. Therefore, the sign of the spin-spin coupling constant can be obtained by an order matrix calculation through the corresponding RDC.
View Article and Find Full Text PDFCore binding factors (CBFs) are heterodimeric transcription factors consisting of a DNA-binding CBFalpha subunit and non-DNA-binding CBFbeta subunit. The CBFbeta subunit increases the affinity of the DNA-binding Runt domain of CBFalpha for DNA while making no direct contacts to the DNA. We present evidence for conformational exchange in the S-switch region in a Runt domain-DNA complex that is quenched upon CBFbeta binding.
View Article and Find Full Text PDFSeveral recent technology-driven advances in the area of NMR have rekindled an interest in the application of the technology to problems in drug discovery and development. A unique aspect of NMR is that it has applicability in broadly different areas of the drug discovery and optimization processes. NMR techniques for screening aimed at the discovery of novel ligands or low molecular weight structures for fragment-based build up procedures are being applied commonly in the industry.
View Article and Find Full Text PDFResidual dipolar couplings (RDCs), in combination with molecular order matrix calculations, were used to unambiguously determine the complete relative stereochemistry of an organic compound with five stereocenters. Three simple one-dimensional experiments were utilized for the measurements of (13)C-(1)H, (13)C-(19)F, (19)F-(1)H, and (1)H-(1)H RDCs. The order matrix calculation was performed on each chiral isomer independently.
View Article and Find Full Text PDFThe crucial step in drug discovery is the identification of a lead compound from a vast chemical library by any number of screening techniques. NMR-based screening has the advantage of directly detecting binding of a compound to the target. The spectra resulting from these screens can also be very complex and difficult to analyze, making this an inefficient process.
View Article and Find Full Text PDFThe effect of longitudinal relaxation of ligand protons on saturation transfer difference (STD) was investigated by using a known binding system, dihydrofolate reductase and trimethoprim. The results indicate that T1 relaxation of ligand protons has a severe interference on the epitope map derived from a STD measurement. When the T1s of individual ligand protons are distinctly different, STD experiments may not give an accurate epitope map for the ligand-target interactions.
View Article and Find Full Text PDFCore-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in several developmental pathways and in human disease. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancers. CBFs consist of a DNA-binding CBF alpha subunit (Runx1, Runx2, or Runx3) and a non-DNA-binding CBF beta subunit.
View Article and Find Full Text PDF