ACS Appl Mater Interfaces
November 2020
A combined photothermal simulation and experimental study leads to a novel internal reflection-assisted direct laser writing carbonization method (IR-DLWc), which enables in situ fabrication of carbon features/patterns that are self-sealed in the interior of a thin polyimide (PI) film in one step without additional packaging procedures. With this new method, carbon line patterns that are fully contained in a 50 μm PI film are fabricated, characterized, and evaluated for their electrical and piezoresistive performance. The self-sealing character of the carbon features created by IR-DLWc imparts them unprecedented mechanical stability/robustness as compared to those fabricated by the conventional DLWc method.
View Article and Find Full Text PDFA nanometer-thick carbon film with a highly ordered pattern structure is very useful in a variety of applications. However, its large-scale, high-throughput, and low-cost fabrication is still a great challenge. Herein, microcontact printing (µCP) and direct laser writing carbonization (DLWc) are combined to develop a novel method that enables ease of fabrication of nanometer-thick and regularly patterned carbon disk arrays (CDAs) and holey carbon films (HCFs) from a pyromellitic dianhydride-oxydianiline-based polyamic acid (PAA) solution.
View Article and Find Full Text PDFBecause of a wide range of applications of porous carbon platelets (PCPs), a robust method for their facile synthesis/fabrication with controlled porous structure, size, and shape is constantly needed. Herein, we report a simple and scalable method for producing PCPs with uniform size and arbitrarily designed shapes. This approach relies on CO laser irradiation to induce carbonization of a biomass composite sheet formed by the infusion of sodium lignosulfonate into a cellulose paper to create porous carbon features with arbitrarily designed shapes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2017
Ultrahigh sensitive piezoresistive sensors at small deformation are highly desired in many applications. Here, we propose a hierarchical contact design concept and implement it through a direct laser writing technique for fabricating layered carbon piezoresistive sensors with ultrahigh sensitivity. Sensors with unprecedented gauge factors (∼5000-10 000) at small deformation (ε < 0.
View Article and Find Full Text PDFThe use of the van der Pauw (VDP) method for characterizing and evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors have not been systematically studied. By using single-wall carbon nanotube (SWCNT) thin films as a model system, herein we report a coupled electrical-mechanical experimental study in conjunction with a multiphysics finite element simulation as well as an analytic analysis to compare the two-probe and VDP testing configuration in evaluating the piezoresistive behavior of carbon nanomaterial enabled piezoresistive sensors. The key features regarding the sample aspect ratio dependent piezoresistive sensitivity or gauge factor were identified for the VDP testing configuration.
View Article and Find Full Text PDFThe influence of temperature on the gold nanorod synthesis process and its effect on tailoring the size and aspect ratio have not been fully investigated and understood. A comprehensive study, involving SEM and TEM microscopy, Vis-NIR spectroscopy, quantitative data analysis and theoretical simulation, is performed to understand the effect of growth temperature on size, aspect ratio, and shape uniformity of gold nanorods that are synthesized by a recently developed binary-surfactant seed-mediated AuNR synthesis method. It has been demonstrated that the temperature can be used as a simple processing parameter to viably tailor the size and aspect ratio of AuNRs as well as the corresponding surface plasmon resonance behavior.
View Article and Find Full Text PDF